
Interactive Dynamics

Andrew Witkin

Michael Gleicher

William Welch

School Of Computer Science

Carnegie Mellon Univserity

Pittsburgh PA 15213

Abstract

Our goal is to use physical simulation as an interactive

medium for building and manipulating a wide range

of models. A key to achieving this goal is the abil-

ity to create complex physical models dynamically by

snapping simple pieces together, integrating the pro-

cess of model creation into the ongoing simulation.

We present a mathematical and computational for-

mulation for constrained dynamics that makes this

possible, allowing encapsulated objects, constraints,

and forces to be combined dynamically and simulated

e�ciently. The formulation handles arbitrary objects,

including nonrigid bodies. We describe an implemen-

tation for interactive dynamics, and discuss applica-

tions to mechanism construction, geometric model-

ing, interactive optimization data �tting, and anima-

tion.

Keywords | Constraints, Simulation, Animation

1 Introduction

Physical simulation by computer has traditionally

�lled a niche as a useful, if cumbersome, tool for quan-

titative analysis and prediction. The skill and labor

required to set up a simulation, followed by hours or

days of run time, have restricted its practice to a hard

core of dedicated specialists.

The increasing availability of high-performance

computers with fast 3D graphics has for the �rst

time made it feasible to perform non-trivial physical

simulations|and see the results|at fully interactive

speeds. This development opens the door to a host of

new and exciting uses for the machinery of physics|

for example, virtual worlds in which a user performs

physical experiments, or builds and tinkers with sim-

ulated machines, or even visualizes and manipulates

abstract mathematical objects with physics serving

as the user interface. Such systems could be of value

to a broad range of users, who need not necessarily

understand the underlying mathematics. Because all

of us are skilled at manipulating the physical world

around us, it makes sense to use simulated physics

as a medium for interaction even where the physical

model is just an analogy to something more abstract.

Raw performance is a prerequisite to interactive

physics, but creating a truly interactive physical

medium entails much more than just making simu-

lations run faster. Traditionally, the model creation

phase is completely separate from the actual execu-

tion of the simulation. The former often involves

manual derivation and coding of the system's equa-

tions of motion. Speeding up the simulation can pro-

vide the ability to manipulate a pre-de�ned model,

but this capability is of limited use without the abil-

ity to dynamically create new models and modify ex-

isting ones. For example, a tinkertoy world for as-

sembling and experimenting with virtual mechanisms

would be of little interest if adding new pieces, mak-

ing and breaking connections, and so forth entailed

exiting the program, writing code, re-compiling and

re-linking. To maintain the virtual world illusion, the

pieces must snap together and apart, transparently

and dynamically, while the simulation is running.

A key to dynamically creating virtual physical ob-

jects lies in the proper treatment of constraints. Con-

straints provide the glue that combines simple ob-

jects to form complex ones, by representing the bolts,

joints, sliders, etc. that turn a bag of parts into a

mechanism. Constraints also permit a user to de�ne

0The work reported in this paper was supported in part by

Apple Computer.

1

objects' form and behavior by stating what is desired,

rather than by explicit speci�cation of shape or mo-

tion.

Incorporating constraints into an interactive set-

ting poses a di�cult problem: the addition (or dele-

tion) of a constraint on a physical system structurally

changes the system's equations of motion, re
ecting

the exchange of forces that causes the constraint to

hold. An interactive medium must respond to these

changes, forming and solving the new equations of

motion, automatically and without noticeable delay.

The challenge becomes still more di�cult if we insist

on preserving the generality of the solution. In partic-

ular, we wish to avoid restricting its scope to collec-

tions of rigid bodies, as, for example, do [1, 12, 5, 11]).

In this paper we present a solution to the prob-

lem posed above, describe its implementation, and

discuss several interactive applications. First, we de-

velop a mathematical formulation for constrained dy-

namics, similar to that of [9], and more loosely re-

lated to [3]. A constraint force that is a linear combi-

nation of constraint gradients is imposed, projecting

the system's acceleration onto the subspace of \le-

gal" accelerations. Calculating the constraint force is

a linear problem, even when the constraints are non-

linear. The general constraint equations are intrinsi-

cally global, dealing with all the objects, forces, and

constraints comprising the physical model. We next

develop a decomposition of these equations in terms

of the contributions of individual elements, without

loss of generality. This allows us to reconcile their

inherently monolithic nature to the requirements of

dynamic construction and encapsulation. We also

describe the more general system for dynamic func-

tion composition on which our implementation of this

structure is based.

We conclude by describing several applications of

interactive dynamics The �rst is a \tinkertoy world,"

a virtual 3-D environment in which the user is able

to create and manipulate pre-de�ned parts, dynami-

cally attach them using a variety of constraints, and

experiment with the resulting structures and mech-

anisms. The second is a two-dimensional system

in which parametric curves are manipulated and at-

tached together using constraints. We then demon-

strate the use of dynamics as a medium for the inter-

active solution of non-linear problems in constrained

optimization, image interpretation and model �tting.

Finally, we describe the use of interactive dynamics

as a medium for creating keyframe animation of char-

acters built by pinning together elastic pieces.

2 Constrained Dynamics

In classical mechanics, constraints play a role as a

means of describing physical systems. Taking the

standard example of a bead sliding freely on a rigid

wire, an important aspect of the bead's behavior can

be summarized just by observing that \the bead stays

on the wire, no matter what."

Constraints such as the bead-on-wire have physical

consequences. Treating the bead as a particle whose

motion is governed by ~f = m~a gives a relation be-

tween its motion and the total force on it: the force

and acceleration lie in the same direction, with their

magnitudes scaled by m. But the bead-on-wire con-

straint implies that the bead will never accelerate in

a way that moves it o� the wire, whatever force is ap-

plied. In the special case of a straight wire, this just

means that the bead's acceleration, and therefore the

total force, must lie tangent to the wire, even if the

force we apply to the bead points in some other direc-

tion. An immediate consequence is that the applied

force, ~fa; cannot be the total force. Rather, there

must also be some other force, a constraint force ~fc;

such that the total force

~f = ~fa + ~fc = k~t; (1)

where ~t is the wire's tangent and k is some scalar.

In words, the force fc is whatever force needs to be

added to the applied one to make the bead accelerate

in a manner consistent with the constraint.1

Constrained dynamics is concerned with making

objects' behavior consistent with the forces of con-

straint. The mathematics of constrained dynamics

are hardly new (see any standard classical mechan-

ics text, such as [6],) although they have begun to

appear only recently in the Computer Graphics lit-

erature [2, 10, 9, 7, 3, 14, 13]. In this section we

address the problem of constrained dynamics in light

of the requirements of interactivity: that we be able

to freely add or delete constraints in an ongoing sim-

ulation, with minimal restrictions on the form of the

constraints or the nature of the objects.

2.1 Restoring forces

Curiously, the constraint force of equation 1 depends

on the applied force, as if the bead and wire were

somehow sensing the applied force and responding ac-

tively to our attempts to pull them apart. Obviously,

no such mechanism exists. We begin by understand-

ing where this dependency comes from.

1Equation 1 obviously doesn't determine ~fc uniquely. This

will be dealt with later.

2

Naturally, the bead-on-wire constraint is an ideal-

ized approximation. A more accurate physical de-

scription would show the bead and wire deforming

a tiny bit as we tried to pull them apart, inducing

a restoring force that cancels the applied force. To

simplify things, we can think of this restoring force

as a rubber band connecting the bead to the wire,

with force �kc, where c is the displacement of the

bead o� the wire, and k is the sti�ness of the rubber

band. In order for the constraint to hold approxi-

mately at equilibrium, i.e. c � �; the sti�ness k must

be su�ciently large that the restoring force �k� can-

cels any applied force, i.e. k = fmax=�; where fmax is

the largest force we plan to apply. To make � small,

we must make k large.

The di�culty with making k large is that doing so

produces di�erential equations that are numerically

intractable, appropriately called sti� equations. To

understand the problem's origin intuitively, consider

what happens when the bead is at rest on the wire

and you try to pull it o� with constant force fmax.

The applied force begins to displace the bead, and

the rubber band begins to exert a restoring force pro-

portional to the displacement. The restoring force

balances the applied one when c = �: When we solve

this system using simple numerical methods, the dis-

tance traveled by the bead accelerating from rest un-

der force fmax in a single timestep �tmust plainly be

on the order of � to avoid substantial overshoot and

instability. In short, the step size must be so small

that the largest permitted applied force fmax makes

objects move only a negligible distance � in a single

timestep, which means you never get anywhere. So,

although sti� rubber bands may be a good descrip-

tion of what really happens, they are not a good way

to enforce constraints numerically.

2.2 Constraint forces

Ironically, the problem of sti�ness is avoided by let-

ting � go to zero (and the sti�ness k to in�nity.) In

this limiting case, the rule c = 0 really does govern

the system exactly. Since there are no displacements,

and hence nothing to restore, the restoring force is

renamed a constraint force. In addition to depend-

ing on the state of the system and on time, as most

forces do, constraint forces depend on other forces. In

this section we develop a system of linear equations

that yield constraint forces which, added in to the or-

dinary applied forces, lead the system to accurately

satisfy the constraints.

To make this result general, we switch at this point

from the speci�c case of a bead on a wire to the

generic one of a system whose equations of motion

have the form

Mij�qj = Cj + Qj (2)

where M is a mass matrix, q is the vector of the

system's independent variables, Q is the vector of

(known) applied forces, and C is the vector of (un-

known) constraint forces.2 This equation is just

f = ma in generalized form. Ultimately, our goal is

to solve for �q, given q, and _q, allowing us to integrate

the di�erential equation forward through time.

Rather than a single constraint, we have a vector of

constraint functions ci(qj ; t), depending on the state

q, and possibly directly on time. The constraints are

met when ci(qj; t) = 0. The constraint equation itself

provides another condition on C: For c to remain at

0 from some initial time t0, it su�ces that c(t0) = 0,

_c(t0) = 0, and �c = 0 from t0 on. If c depends on time

directly and also through the state q; we have from

the chain rule

_ci =
@

@t
ci(qj(t); t) =

@ci

@qj
_qj +

@ci

@t
;

and di�erentiating again gives

�ci =
@ci

@qj
�qj +

@ _ci

@qj
_qj +

@2ci

@t2
; (3)

noting that
@ _ci

@qj
=

@2ci

@qj@qk
_qk:

If W is the inverse of mass matrix M , then equation

2 becomes

�qj = Wjk(Ck + Qk):

Substituting into 3 and setting �c to zero yields the

condition

@ci

@qj
Wjk(Ck +Qk) +

@ _ci

@qj
_qj +

d2ci

dt2
= 0: (4)

which is a system of linear equations with only the

constraint force vector C unknown. In words, equa-

tion 4 just says that the constraint force, added into

the applied force, must cause the second time deriva-

tive of the constraints to be zero. This condition is

generally too weak: if the system is underconstrained,

as is usually the case (otherwise nothing can move at

all!) we have fewer equations than unknowns, and

there exist many values for C that satisfy equation 4.

2In index notation, an unsubscripted quantity is a scalar,

one subscript denotes a vector, and two denote amatrix. Under

the summation convention, the appearance of any index twice

in a term implies summation, so thatMijqj means
P

j
Mijqj;

which is matrixM times vector q.

3

2.3 Virtual work

The ambiguity of equation 4 is easy to understand.

The equation states that the system's acceleration

must not move the constraint functions from zero,

but in an underconstrained system, a whole subspace

of such \legal" accelerations exist. Given a constraint

force that satis�es equation 4, nothing said so far pro-

hibits us from adding to it any additional force we

like, as long as the acceleration it induces lies in that

legal subspace. To remove this ambiguity it su�ces

to add one reasonable restriction: that the constraint

never add or remove energy from the system, which

is to say that it may do no work. To guarantee this

we require that the the work done by the constraint

force vanish, under any small displacement of the sys-

tem consistent with the constraints. Thus, for ev-

ery legal displacement dq; C must satisfy Cjdqj = 0;

which simply requires the constraint force to point

in a direction in which the system is forbidden to

move. This requirement, known as the principle of

virtual work, is not derived from anything else. It is

a restriction, albeit a reasonable one, on the class of

constraints to be considered.

In the case of a single scalar constraint c, the \le-

gal" displacements are those lying in the tangent

plane to the surface c = 0. Because the gradient

@c=@q is normal to the tangent plane, this means that

every legal displacement must satisfy (@c=@q)dq = 0.

The forbidden displacements are those that satisfy

dq = �(@c=@q) for any scalar �. The multidimen-

sional generalizations of the tangent plane and the

gradient direction are the null space and null space

complement of the constraint Jacobian matrix. The

null space contains the displacements satisfying

@ci

@qj
dqj = 0;

while the null space complement contains those that

satisfy

dqj = �i
@ci

@qj

for some vector �i. Viewing the constraint vector as

a collection of scalar constraints, the null space is the

set of vectors which lie in every constraint's tangent

plane, while the null space complement is the set of

linear combinations of the constraint gradients.

To lie in the null space complement, the constraint

force must therefore satisfy

Ci = �i
@ci

@qj

for some vector �. Enforcing the virtual work princi-

ple is simply a matter of replacing Ck by �r@cr=@qk

in equation 4, and solving for �. The components of �

are known as Lagrange multipliers. This substitution,

with some re-arrangement, yields

�

�
@ci

@qj
Wjk

@cr

@qk

�
�r =

@ci

@qj
WjkQk +

@ _ci

@qj
_qj +

@2ci

@t2
;

(5)

in which the entire right hand side is known, and the

matrix on the left hand side|a product of the con-

straint Jacobian, the inverse mass matrix, and the

Jacobian transpose|is a square matrix with the di-

mensions of the constraints.3 Once the linear sys-

tem is solved, the constraint force is computed as

Cj = �i@ci=@qj; and the total force Cj+Qj is plugged

into equation 2 to obtain the acceleration, �qj.

2.4 Feedback

In principle, it su�ces to begin with legal initial con-

ditions, in which c = 0 and _c = 0, and ensure that

�c = 0 thereafter by solving equation 5 for the con-

straint force. In practice, an extra feedback term is

needed to bring the system into a legal state initially,

and to inhibit drift. Including the damped feedback

term, the total force becomes

Qj + Cj + �ci
@ci

@qj
+ � _ci

@ci

@qj
;

where � and � are constants. This additional term is

e�ectively a damped spring pulling the system back

towards a legal state. Because it vanishes when the

system is in a legal state, with c = 0, and _c = 0 the

feedback is not a true force. Feedback may be incor-

porated into the constraint force directly by making

a small modi�cation to equation 4, as described in

[9]. However, we have not found this to be advan-

tageous, particularly in obtaining least-squares solu-

tions to overconstrained systems.

2.5 First order systems

When the machinery of constrained dynamics is to

be used as a tool for manipulating purely geometric

or otherwise non-physical objects, it is often desirable

to replace the second order equations of motion with

a �rst order system of the form

_qi = WijQj;

in e�ect replacing f = ma by f = mv, approximately

modeling the behavior of a highly damped system

3If it is not desired to invert the mass matrix explicitly, a

larger but sparser linear system may be formed that involves

the mass matrixM instead of W . See [9].

4

with negligible mass. The e�ect of this change is sim-

ply that things stop moving the moment forces are

withdrawn, which facilitates accurate positioning in

geometric modeling applications. One such applica-

tion will be described later. The form of equation 5

changes only slightly when �rst order equations are

adopted: the term @ _c=@q disappears, and instead of

the second direct time derivative, we have the �rst,

@c=@t. The derivation of the �rst-order constraint

equation follows closely that of equation 5, except

that _c rather than �c is being held at zero, and �rst

order equations of motion are used.

3 Decomposition

Equation 2 and equation 5 of the previous section are

\universal," in the sense that the equations of mo-

tion and the constraints are represented in generic,

anonymous form, rather than representing any par-

ticular constrained system. The equations are also

intrinsically global: all the objects, constraints, and

forces in a system are coupled, with each constraint

force generally depending on every other, as well as

on the applied forces, and on the positions, velocities,

and mass matrices of all the objects.

How are these monolithic equations to be applied

to speci�c systems of interacting objects and con-

straints? Tackling a toy problem by hand, as in

most textbook examples, we would simply use the

generic equations as a template, �lling in the blanks

with the problem speci�cs. One such toy problem

is a dumbbell, represented as two unit-mass particles

constrained to lie a distance r apart. This system's

state vector, q; holds six elements, representing the

two particles' positions,

q = [x1; y1; z1; x2; y2; z2];

and its mass matrix is the identity. The equations of

motion, expressed in terms of the three components

of force on each particle, are just

�q = [fx1; fy1; fz1; fx2; fy2; fz2]:

The single scalar constraint, to be held at zero, can

be written

c = r � ((x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2)1=2;

or, in terms of q-components

c = r � ((q1 � q4)
2 + (q2 � q5)

2 + (q3 � q6)
2)1=2:

Having written out these expressions, and by elemen-

tary di�erentiation produced a moderately ugly ex-

pression for @c=@q, one may then
esh out the skele-

tal constraint equation4 and solve for the constraint

force, which is then plugged back into the equations

of motion, along with the applied force and the feed-

back term.

On a small-scale example such as this, it would not

be di�cult to complete and implement the exercise.

It should be obvious, however, that this kind of sub-

stitution and expansion is not the way to build large-

scale constrained models interactively. Each time an

object or a constraint is added, modi�ed or deleted,

algebraic manipulations must be performed to derive

the new equations, and the results somehow put into

a form that supports e�cient numerical evaluation.

Obviously, a system in which attaching or detaching

two objects triggers extensive algebraic manipulation,

code generation, compilation, and linking would be

unlikely to achieve interactive performance, even if

the symbolic algebra and code generation could be

automated.

Fortunately, the system of objects, constraints, and

forces de�ning a model need not be allowed to dissolve

into a massive unstructured algebraic expression. In

this section we will see that all of the global quantities

contained in equations 2 and 5 may be constructed

by composing a small, stylized set of local quantities,

each depending only on a single object or a single

constraint. To exploit this mathematical regularity,

we require each primitive object or constraint to com-

pute the local quantities for which it is responsible,

performing the composition dynamically. In this sec-

tion we describe the mathematical decomposition of

the global equations into local quantities. The struc-

ture we develop is illustrated schematically in �gure

1. The next section describes the e�cient implemen-

tation of dynamic composition.

3.1 State vectors and mass matrices

The state, q, of a compound model is distributed

over the objects it contains. The state of each ob-

ject may itself be heterogeneous, containing scalars,

vectors, matrices, quaternions, or whatever, in any

combination. In implementing an object it may be

important to preserve this internal structure. From

outside, however, it may be hidden by collapsing the

state into a single vector, and providing operations to

determine the length of the
attened vector, to get

and set the state and its time derivative, etc, allow-

ing the object's mapping between its internal state

and the external state vector to remain hidden. The

4Note that in this instance @ _c=@q and @2c=@t2 are both zero,

and that the inverse mass matrix,W; is the identity.

5

Figure 1: A schematized model. The three objects'

state vectors are concatenated to form the global

state vector, and the two constraints' outputs form

the global constraint vector. The constraints depend

on state through connectors, which represent out-

puts of the objects. The whole structure de�nes the

global constraint function ci(qj). Each constraint-

object pair de�nes a block in the constraint Jacobian

matrix. The block may be non-zero only when the

constraint depends on the object.

global state vector is formed just by concatenating

the objects' state vectors.

Similarly, each object contributes a square block to

the global mass matrix, situated on the diagonal. In

this special case of non-overlapping diagonal blocks,

the inverse of the global mass matrix is obtained by

inverting each object's matrix independently. The in-

verted diagonal blocks can then be combined to form

the global matrix W .

3.2 Constraints and Connectors

The global constraint vector, like the state vector,

is formed by concatenating the contributions of each

constraint. In order to evaluate the constraint func-

tions, and the Jacobian matrix that relates the con-

straints to the state, a new layer of structure must be

introduced. In the global equations, the constraint

vector c was given as a function of the state q and

of time. Generally, though, the dependence of con-

straints on state is indirect, mediated by quantities,

such as coordinates of points on the surfaces of ob-

jects, that may be viewed as \outputs" of the ob-

jects, pieces of geometry that \move with" the ob-

ject in the sense that their values depend on state.

For example, a point on a circle, with coordinates

[r cos � + x0; r sin � + y0] for a constant �, tracks

changes in the radius r and the center [x0; y0]. A

connector is any such fragment of geometry, encap-

sulated with any constant information (such as � for

the circle point) that is required to de�ne it. In addi-

tion to representing points on surface, connectors can

also represent surface normals, areas and volumes, or

anything that might be subjected to a constraint, or

to which a force might be applied.

The bene�t of introducing connectors is that they

allow us to formulate generic constraints|e.g. at-

taching two points together|without the need to

know anything in advance about the objects being

constrained. Consider an arbitrary equality con-

straint c on a pair of points a and b, which could

be written

ci(qj) = fi(ak(qj); bk(qj))

where f is whatever function de�nes the constraints

(just subtraction in the case of an attachment con-

straint,) using whatever formulae determine a and b

as functions of their respective objects' state. From

the standpoint of decomposition and encapsulation, it

is signi�cant that the function f (a; b) is only a prop-

erty of the constraint, not the constrained objects,

while the position functions a(q) and b(q) are prop-

erties only of the two constrained objects, not of the

6

constraint. We can write the constraint's Jacobian as

@ci

@qj
=

@ci

@ak

@ak

@qj
+

@ci

@bk

@bk

@qj
(6)

by simple application of the chain rule, and again

each of the four derivative matrices appearing in ex-

pression belongs to exactly one object or constraint.

Each pairing of a constraint with an object generates

a block in the global Jacobian matrix. Only if the

constraint depends on the object may the block be

nonzero (�gure 1).

In a similar vein, the matrix @ _ci=@qj appearing in

equation 5 may be written

@ _ci

@qj
=

@ _ci

@ak

@ak

@qj
+

@ _ci

@ _ak

@ _ak

@qj
+

@ _ci

@bk

@bk

@qj
+

@ _ci

@ _bk

@ _bk

@qj
(7)

which once again preserves modularity. If the con-

straint depends directly on time, this dependence

is by de�nition encapsulated within the constraint,

and so involves no composition. Finally, it remains

to evaluate the constraint vector itself and its time

derivative, as required in the feedback term. This is

a simple matter of function composition, given as

ci = fi(ak(qj); bk(qj))

and

_ci =
@ci

@t
+

@ci

@ak
_ak +

@ci

@bk
_bk:

The generalization to constraints with any number of

inputs is straightforward|all the above expressions

become summations over the inputs.

3.3 Forces

Finally, a force f may be applied to any connector

output x using the simple universal formula

Qj = fi
@xi

@qj
; (8)

which is the formula for transforming an applied force

into a generalized force on the state. The total gen-

eralized applied force is obtained by summing each

applied force's contribution.

3.4 Summary

The formulae given require that only a very few dis-

tinct quantities be computed by each object and each

constraint. An object must be able to report its state

length L, get and set its state q and velocity _q, and

compute its inverse mass matrix W . A connector on

an object must be able to compute its output x, the

time derivative _x, and the two derivative matrices

@x=@q and @ _x=@q. A constraint must be able to eval-

uate its output, c, given its inputs, the direct time

derivatives @c=@t and @2c=@t2, and, for each input x,

the derivative matrices @c=@x, @ _c=@x, and @ _c=@ _x.

Provided that each part is able to perform these

evaluations, constructing the constraint equations

and equations of motion governing an arbitrary sys-

tem of objects, constraints, and applied forces is a

comparatively simple operation, easily performed dy-

namically. The operations required to assemble the

global equations are are just global index assign-

ment, function composition, and matrix multiplica-

tion. The next section addresses some aspects of the

e�cient implementation of the process.

4 Implementation

4.1 Function blocks

The assembly of constraint equations is an instance of

a larger class of problems, involving the dynamic com-

position of mathematical functions, and evaluation of

the outputs and of their derivatives with respect to

inputs. Our implementation of constrained dynamics

is built on a facility, called function blocks, designed

to handle this broader class.

A function block encapsulates a real-valued mathe-

matical function that maps some inputs to some out-

puts. Each block supports operations that evaluate

its outputs given its inputs, and also its Jacobian

matrix|the derivative of its outputs with respect to

its inputs.

The implementor's task in creating a new block

type is to provide code that computes the function

and its Jacobian. This task is su�ciently regular

that we have automated the process to the degree

that only the mathematical form a block embodies

need be speci�ed, the rest being generated by sym-

bolic di�erentiation, simpli�cation, and conversion of

the expressions to code.

Complicated functions are built by creating di-

rected acyclic graphs whose nodes are function blocks,

and whose arcs, connecting inputs to outputs, denote

function composition. At runtime, the function block

library provides a variety of support services for creat-

ing and deleting connections, doing the bookkeeping

associated with global indexing, etc.

Evaluation of an output of the graph can be a

simple recursive descent, each block instructing the

blocks that provide its inputs to compute their out-

puts, then computing its own. The recursion bot-

toms out at special nodes that hold the system's state.

7

Caching is used to avoid the redundant computation

of shared quantities.

The evaluation of Jacobians involves a recursive ap-

plication of the chain rule. If a block implements a

function fi(xj), then, by the chain rule, its derivative

with respect to a vector of variables qk; on which the

block's inputs presumably depend, is

@fi

@qk
=

@fi

@xj

@xj

@qk
;

which is just the product of the block's internal Jaco-

bian with the Jacobian of its inputs with respect to

the q's. Thus the Jacobian may be computed recur-

sively, each block instructing its inputs to compute

their Jacobians, then multiplying the collected input

Jacobian by its internal one. The recursion bottoms

out at the state nodes, where

@xj

@qk
=

@qj

@qk
= �jk;

which is the identity matrix.

In practice, e�cient Jacobian evaluation is far more

complicated than the recursive evaluation of the func-

tion itself, because the matrices are typically sparse,

and it is vital that their sparsity be preserved and

exploited. Other complications arise involving, for

example, issues of the allocation of storage for inter-

mediate matrices. The naive recursive descent algo-

rithm, even with caching, is therefore not necessarily

the best. See [4] for a general discussion of sparse

matrix techniques.

4.2 Physobs

Our implementation of interactive constrained dy-

namics employs a more specialized layer, called

physobs, built on the generic machinery of function

blocks. The classes that make up this layer corre-

spond to the elements described in the previous sec-

tion: physical objects, connectors, and constraints.

In addition, behaviors apply forces to connectors, im-

plementing springs, dampers, motors, and the like,

and a world structure performs such global functions

as solving the linear system and the resulting con-

strained di�erential equation.

The function block machinery automatically han-

dles the maintenance of global coordinates for the

state and constraint vectors; the dynamic composi-

tion of the constraint functions and their derivatives

with respect to state; and a variety of bookkeeping

and support functions.

Figure 2: The tinkertoy system is a 3D environment

for interactive model construction and manipulation.

5 Applications

We are developing a number of applications of inter-

active dynamics. In this section we describe several

of these. A major purpose in developing these ex-

perimental systems has been to explore the range of

problems to which interactive dynamics applies.

5.1 Tinkertoys

A basic motivation of our research has been the desire

to build and manipulate virtual 3D mechanisms. The

tinkertoy system (�gure 2) allows the user to build

contraptions, using constraints to snap together pre-

de�ned parts, with no arti�cial distinction between

model construction and simulation. The user of the

system need have no understanding of the underlying

mathematics and physics.

5.2 Geometric Modeling

Another experimental system is concerned with the

interactive construction and manipulation of models

composed of arbitrary parametric curves (�gure 3.)

The idea is to convert parametric curves, which are

purely geometric objects, into pseudophysical objects

that respond in an intuitive way to user input. The

user moves and reshapes curves by freely pushing and

pulling on them, providing a consistent mode for di-

rect manipulation of all shapes.

Each curve drawn on the screen is interpreted as a

physical object by assigning it negligible mass, with

uniform viscous drag along its length. Under this

model, a curve responds to forces by changing shape

8

Figure 3: A model consisting of parametric curves

attached by constraints. By grabbing and pulling ar-

bitrary points on the curve, the user may move and

reshape the model subject to the constraints.

and position in accordance with the equations that

de�ne it. For example, a circle may change radius

and position. Because the user controls the object

directly through its appearance on the screen, the

underlying parameterization is hidden, making it easy

for the user to control curves whose parameters are

nonintuitive or interact nonlinearly.

Attachment constraints serve to nail curves to-

gether, while springs and other forces permit the

user to express preferences that are weaker than con-

straints. Because they are dynamic simulations, the

models created are more than static drawings: the

system is proving useful as a tool for experiment-

ing with planar mechanisms, as well as a tool for

constraint-based drawing.

The steps that go from the parametric equations

that de�ne the geometry of a curve or surface to the

compiled code that allows a user to interact with it

as a physical object involve rote di�erentiation, sim-

pli�cation, and code generation. We have fully auto-

mated these steps as an o�-line compilation process,

allowing a user to add a new curve type to the sys-

tem just by entering the pure mathematical equations

that de�ne it.

5.3 Interactive Optimization

An additional area of interest is the use of dynamics

as a medium for the interactive solution of non-linear

problems in constrained optimization. The idea is

to convert local minima in the objective function into

attractors, so that the model is continuously \pulled"

toward some local solution. The user exercises global

control by dragging the model toward the desired so-

lution, then letting go, allowing the local attractor to

take over.

An earlier application of interactive optimization

to computer vision is described in [8]: a dynamic 2-D

curve, called a snake is superimposed on an image and

attracted to points of high contrast. The curve's be-

havior approximates that of a springy, stretchy wire.

Placed near an edge, the curve locks on to it and is

able to track its motion. At any time, the user may

grab the curve and pull it toward features of interest.

In addition to continuing the investigation of vi-

sion applications, we are exploring other tasks involv-

ing the manipulation of nonlinear models and opti-

mal data �tting. One experimental system allows the

user to de�ne a collection of variables, enter algebraic

expressions representing constraints on the variables,

functions to optimize, or user-accessible outputs. The

user may then directly manipulate the system subject

to the constraints, using sliders to pull on the outputs.

Related investigations include the dynamic �tting of

parametric models to scatter data.

5.4 Troids

Troids are simpli�ed linearly deformable bodies. A

2-D troid may be viewed as an a�ne transformable

sheet containing mass in some distribution. Troids

are imbued with internal elastic forces that make

them tend toward a rest state, and tend to preserve

their original area. Because the deformations they

undergo are linear, troids are extremely simple ob-

jects, simpler in fact than rigid bodies. In the case

of a collection of troids that are attached together

or nailed in place, the constraint matrix on the left

hand side of equation 5 is constant. This simpli�-

cation allows us to pre-invert the constraint matrix,

eliminating the need to solve a linear system at each

evaluation of �q. The simulation of models built from

troids is therefore very fast.

Because they are de�ned in terms of deformations,

troids may be rendered by transforming arbitrary

curves, drawings, etc. created in body coordinates

(see �gure 4).

We are using troids as a means of rapidly creat-

ing physical keyframe animation. Control is accom-

plished by constraining speci�ed points to move along

user-de�ned trajectories. The desired acceleration of

the control point along the trajectory appears as the

@2c=@t2 term of equation 5. Subject to the keyframe

constraints, and the attachment constraints that hold

pieces together, the system moves with passive non-

9

Figure 4: Top: a collection of troids, rendered with

polygons, and attached using constraints and rubber

bands. Bottom: another still from the same anima-

tion. The animation is driven by two motion paths,

one attached to the arm, the other to the shirt.

rigid physics. The resulting behavior is best com-

pared to that of stretchy puppet whose hands, feet,

etc., are directly controlled. By adjusting the sti�ness

and drag of the internal forces it is possible to cre-

ate behaviors ranging from highly non-rigid jello-like

motion to nearly rigid forms.

References

[1] WilliamW. Armstrong and Mark W. Green. Vi-

sual Computer, chapter The dynamics of artic-

ulated rigid bodies for purposes of animation,

pages 231{240. Springer-Verlag, 1985.

[2] Ronen Barzel and Alan H. Barr. Topics in

Physically Based Modeling, Course Notes, vol-

ume 16, chapter Dynamic Constraints. SIG-

GRAPH, 1987.

[3] Ronen Barzel and Alan H. Barr. A modeling

system based on dynamic constaints. Computer

Graphics, 22:179{188, 1988.

[4] J. S. Du�, A. M. Erisman, and J.K. Reid. Direct

Methods for Sparse Matrices. Oxford University

Press, Oxford, UK, 1986.

[5] Michael Girard and Anthony A. Maciejewski.

Computational Modeling for the Computer An-

imation of Legged Figures. Proc. SIGGRAPH,

pages 263{270, 1985.

[6] Herbert Goldstein. Classical Mechanics. Addi-

sion Wesley, Reading, MA, 1950.

[7] Paul Issacs and Michael Cohen. Controlling dy-

namic simulation with kinematic constraints, be-

havior functions and inverse dynamics. Com-

puter Graphics, 21(4):215{224, July 1987. Proc.

SIGGRAPH '87.

[8] Michael Kass, Andrew Witkin, and Demetri Ter-

zopoulos. Snakes: Active contour models. Int.

J. of Computer Vision, 1(4), 1987.

[9] John Platt. Constraint Methods for Neural Net-

works and Computer Graphics. PhD thesis, Cal-

tech, 1989.

[10] John Platt and Alan Barr. Constraint methods

for
exible models. Computer Graphics, 22:279{

288, 1988.

[11] Peter Schroeder and David Zeltzer. Dynamic

simulation with linear recurive constraint pro-

pogation. Computer Graphics, 1990. In press.

10

[12] Jane Wilhelms and Brian Barsky. Using dynamic

analysis to animate articulated bodies such as

humans and robots. Graphics Interface, 1985.

[13] Andrew Witkin, Kurt Fleischer, and Alan Barr.

Energy constraints on parameterized models.

Computer Graphics, 21(4):225{232, July 1987.

Proc. SIGGRAPH '87.

[14] Andrew Witkin and Michael Kass. Spacetime

constraints. Computer Graphics, 22:159{168,

1988.

11

