
Fast Animation and Control
of Nonrigid Structures

Andrew Witkin
William Welch

School Of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We describe a fast method for creating physically based
animation of non-rigid objects. Rapid simulation of non-
rigid behavior is based on global deformations. Con-
straints are used to connect non-rigid pieces to each other,
forming complex models. Constraints also provide mo-
tion control, allowing model points to be moved accurately
along specified trajectories. The use of deformations that
are linear in the state of the system causes the constraint
matrices to be constant. Pre-inverting these matrices there-
fore yields an enormous benefit in performance, allowing
reasonably complex models to be manipulated at interac-
tive speed.

Keywords — Constraints, Simulation, Animation

1 Introduction

A good deal of work has been done toward the use of
physical simulation as a means of producing animation.
Despite the wealth of impressive results, physically based
modeling is not in wide use, because of the unfamiliarity
and complexity of the methods, because of the computa-
tional expense of simulation, and because of the difficulty
of controlling simulated objects. In this paper we present
a fast and simple formulation for building and controlling
models composed of non-rigid pieces. Our method has
three major parts:

Non-rigid objects. Our model for non-rigid dynamics
is based on global deformations with relatively few degrees
of freedom. This formulation provides objects that deform

in a geometrically simple but physically correct way. A
further simplification is achieved by restricting attention to
deformations that are linear in the system’s state variables.
This class includes both free-form deformations of the sort
described in [14], and simpler affine deformations. One
beneficial effect of this simplification is that the body’s
mass matrix is constant, allowing it to be pre-inverted.

Attachment constraints. Point-to-point attachment
constraints are used to build complex models from the
simple non-rigid pieces. Attachment constraints are im-
plemented using a method fully described in [19], and
related to those in [4] and [11]. The idea is to calculate
a constraint force that accurately counters applied forces
that would otherwise pull the pieces apart. Ordinarily,
obtaining the constraint force requires the solution of a
linear system at least once per time step. The linear-
ity restriction, however, causes the constraint matrix to be
constant, except when constraints are added or deleted. By
pre-inverting this matrix, we need only perform a matrix
multiplcation instead of an inversion at each step.

Motion control. The same machinery that supports
attachments allows specified object points to be moved
accurately on arbitrary trajectories. Controlling the motion
of a point is not fundamentally different from nailing it
in place, except that the “nail” is moving as a known
function of time, giving rise to simple additive terms that
take account of its motion. As with attachment constraints,
the restriction to linear deformations ensures a constant
constraint matrix.

Together, these elements give us the capability to cre-
ate non-rigid pieces, wire them together in arbitrary ways,
then control the motion of arbitrary points on the objects.
A reasonably accurate view of the resulting models is to
regard them as articulated puppets, whose parts are made
of rubber, jello, or other non-rigid materials, with spec-
ified points under full control of the “puppeteer.” Our

The work reported in this paper was support in part by Apple Computer.



method is fast enough to be practical: using widely avail-
able hardware, we can achieve interactive, even real-time
performance with models that are complicated enough to
be interesting subjects for animation.

This basic capability is only a starting point. Given the
ability to control the motion of arbitrary points, how shall
we specify where they should go? Interesting approaches
include direct manual control and interactive keyframing.
Our recent emphasis, however, has been on the develop-
ment of a vocabulary of goal-directed behaviors that are
chained to create complex actions. An example of a simple
atomic behavior is one that smoothly moves a body point
to a specified position and velocity over a specified time
interval. A slightly more elaborate one makes a body point
chase and capture a moving target point. Simple chain-
ing permits the specification of compound actions such as
“Make point a grab point b, move it to point c, then let go.”

1.1 Background

A number of authors have investigated the use of
articulated-body dynamics for animation [1, 17, 7, 9, 13].
Several of these employ highly efficient recursive dynam-
ics formulations, but they are specific to articulated models
composed of rigid bodies. The use of non-rigid dynamics
for animation has been described in [15, 12, 16, 5, 10]
The use of large finite-difference meshes, (or of mass-
spring lattices, which are essentially equivalent,) poses a
performance problem for two reasons: first, such systems
possess many degrees of freedom, and second, they tend to
lead to stiff equations which are expensive to solve. In [10],
Pentland and Williams describe the use of modal analy-
sis to create simplified dynamic models. By discarding
high-frequency modes, the dimensionality and stiffness of
the models are both drastically reduced. The models we
develop here yield similar advantages, though we arrive
there by a very different route.

The use of constraint methods for model creation and
motion control has been extensively treated. [3, 18, 7, 9,
4, 12, 11, 20, 19, 13] A number of these entail the use
of inverse dynamics to calculate constraint forces. The
formulation employed here, which is based on the method
of Lagrange multipliers, is described fully in [19], and is
also closely related to that presented in [11].

2 Linear Deformations

2.1 The mechanics of global deformations

A global deformation [2, 14, 6] is a mathematical function
that maps space to itself by assigning new, deformed co-
ordinates to each point within some region of undeformed
space. Applying a global deformation to an object entails
deforming the space in which the object sits, allowing the

points on the object’s surface to be carried along. Any
given deformation has associated with it some control pa-
rameters, such as bend or twist angles, that govern its
behavior. Global deformations were originally introduced
as a purely geometric modeling tool, allowing primitive
shapes to be modified in stylized but interesting ways by
manually adjusting the parameters.

Global deformations may also be made to serve as a
substrate for simplified nonrigid dynamics by augment-
ing them in two respects: we embed masses in the space
on which the deformation acts, and we define an energy
of deformation that induces the desired behavior, such as
elasticity or volume preservation. As with the simplified
modal models of [10] the use of simple global deforma-
tions offers the twin advantages of reduced dimensionality
and the elimination of the high-frequencycomponents that
lead to stiffness. In return for this large performance ad-
vantage, we naturally give up the ability to deform our
objects in ways that cannot be represented using the cho-
sen global deformation.

As an aid to understanding the derivation that follows,
imagine a cloud of fixed point masses, all subjected to a
global deformation. Although stationary in undeformed
coordinates, the deformed points would be seen to move
in response to a change of the deformation parameters.
The addition of mass thus associates with any parame-
ter displacement a mass displacement. This association
allows us to express the body’s inertial proprties, in par-
ticular its kinetic energy, as a function of the deformation
parameters and their time derivatives. Once we have ex-
pressed the kinetic and potential energies as a function of
the parameters, Lagrange’s equations of motion(see [8] or
any other classical mechanics text) provide a cookbook
procedure for deriving the equations of motion, producing
a generalization of the familiar f = ma: In the parlance
of Lagrangian dynamics, the vector of parameters consti-
tute the system’s generalized coordinates, which we will
denote by q.

To derive Lagrange’s equations one must first express
the kinetic energy T as a function of q and q̇, and the
potential energy V as a function of q. In terms of the
Lagrangian, defined as L = T �V , Lagrange’s equations
are then

d

dt
(
@L

@q̇
)�

@L

@q
�Q = 0; (1)

where Q is the force in q-space, known as generalized
force.

The kinetic energy of a particle at position x with mass
m is just 1

2mẋ2, and the kinetic energy of a deformable
body is the sum of its mass points’ kinetic energy. For an



arbitrary deformation, the velocity of a particle is 1

ẋi = Jij q̇j ;

where the Jacobian matrix J is defined by

Jij =
@xi

@qj
:

If the mass at x is m, then the kinetic energy due to the
point mass is

T =
1
2
mẋiẋi =

1
2
mJijJik q̇j q̇k: (2)

and the kinetic energy of the whole body is just the sum
of this quantity over all the point masses. In the case of a
continuous mass distribution, the sum becomes an integral
and mass is replaced by mass density.

The form of the potential energy V depends on the
desired behavior. For example, in a global bend defor-
mation with bend angle �, an energy term of the form
V = (� � �r)

2 would attract � elastically to the rest value
�r. The generalized forceQ is typically due to point forces
applied to the object. The generalized force due to a point
force f applied at x is Q = fiJij , with the Jacobian J

evaluated at x.

2.2 Linear deformations

The preceding discussion applies to any deformation func-
tion. However, the Lagrangian equations of motion sim-
plify greatly for deformations that are linear functions of
the state. Such deformations may be expressed in the form

xi = Rijpj ;

where x is a world-space point, the components of matrix
R are the generalized coordinates, and p is a function of
the undeformed point, but not of R or of time. While
deformations of this form are linear in the state R, x

may depend nonlinearly on the undeformed coordinates
through the function p. For example, p might be defined
by p(x; y; z) =

�
1; x; y; z; xy; xz; yz; x2; y2; z2

�
; which

is 2nd order. In fact, any polynomial deformation may be
cast in this form.

Since p is not a function of time, we then have point
velocity

ẋi = Ṙijpj

and kinetic energy

T =
1
2
ṘijṘikMjk;

1In index notation, an unsubscripted quantity is a scalar, one subscript
denotes a vector, and two denote a matrix. Under the summation con-
vention, the appearance of any index twice in a term implies summation,
so that Mijvj means

P
j
Mijvj ; which is matrix M times vector v.

where M is a constant symmetric mass matrix defined by

Mjk =
X�

mpjpk
�
;

with summation performed over all the mass points in the
body.

For the sake of readability, we will omit the potential en-
ergyV , noting that the force due to V is�(@V=@q), which
may be subsumed in the generalized force Q. Therefore
the Lagrangian is just L = T . To obtain Lagrange’s equa-
tions, we observe that

@L

@Ṙrs

=
1
2

�
�ir�jsṘik + �ir�ksṘij

�
Mjk ; (3)

where the �’s are Kroeneker deltas, defined by �ij = 1
if i = j, and zero otherwise; that is, the identity matrix.
Using the identity ai�ij = aj , and also the symmetry of
M , we obtain

@L

@Ṙrs

= ṘrkMks:

It follows straightforwardly that

d

dt

�
@L

@Ṙrs

�
= R̈rkMks

and also that
@L

@Rrs

= 0:

Combining these pieces, Lagrange’s equations are

R̈ijMjk �Qik = 0; (4)

and since M is constant, its inverse W may be pre-
computed, giving

R̈ij = QikWkj : (5)

Finally, the generalized forceQ due to a force f applied
at world-space point xi = Rijpj is

Qrs = fi
@xi

@Rrs

= fi�ir�jspj = frps:

The inverse mass matrix W represents the linear func-
tion that maps forces into accelerations. The fact that
W is constant affords some gain in efficiency in solving
equation 5 because the matrix need not be inverted anew
at each step. This is not a large advantage because the
matrix is relatively small. The major benefit of a con-
stant W will emerge later in the discussion of constraints.
Figure 1 illustrates a second-order deformable object, with
p(x; y; z) =

�
1; x; y; z; xy; xz; yz; x2; y2; z2

�
; and withR

a 3 � 10 matrix.



2.3 Affine deformable bodies

A particularly simple linear deformation has

pi(rj) = [r1; r2; r3; 1] ;

where r is a point in body coordinates, and

Rij =

2
664

m11 m21 m31

m12 m22 m32

m13 m23 m33

t1 t2 t3

3
775 ;

which resembles a homogeneous transformation matrix
with the rightmost column deleted. The 3 � 3 subma-
trix m is an ordinary 3D transformation matrix, and t is
a translation vector. A body defined by subjecting mass
points to this deformation is permitted to undergo affine
transformations—translation, rotation, stretch, and shear,
with equations of motion as given in equation 5. Despite
the limited range of deformations they afford, affine de-
formable bodies offer two significant advantages: first,
graphics workstations perform affine deformations very
quickly; and second, the potential energy terms that yield
elastic and volume preserving behavior become extremely
simple.

2.4 Potential energy functions for affine
bodies

An affine deformable body is in its undeformed state ex-
actly when the submatrix m is an orthogonal matrix, de-
fined by mijmik = �jk . To see why, note that the squared
magnitude of a transformed vector xj is mijmikxjxk .
This is equal to the squared magnitude of x for all x ex-
actly when m is orthogonal. An energy function whose
minimum lies at the undeformed state is

Ve = ke jmijmik � �jkj
2
;

where ke is a stiffness constant. This is a “rigidity” term,
giving elastic behavior.

The affine deformation is volume preserving exactly
when det(m) = 1, so that an energy function that resists
compression and dilation is Vc = kc jdet(m)� 1j2, where
kc is also a stiffness constant. The imposition of this term
gives a body that, when stretched along one dimension,
reacts by squashing along the others, and vice versa.

The required gradients that give the forces due to both
these energy terms are readily derived. Velocity depen-
dent damping forces may be imposed on these and other
potential functions using the form

Qij = �kdV̇
@V

@Rij

;

where kd is a positive drag constant. Adjusting the stiff-
ness and drag constants yields a wide range of physical
behavior, from a bouncy jello-like response to near rigid-
ity.

3 Constrained Dynamics

In [19] we present a general formulation for constrained
dynamics, similar to that of [11], and more loosely related
to [4]. Here we briefly summarize the general solution,
then develop the simplified form for deformable bodies
defined by linear deformations.

3.1 The general form

If vector q represents the state of a physical system, then a
holonomic constraint may be defined implicitly by a func-
tion c(q; t), where the states consistent with the constraint
are those that satisfy c(q; t) = 0. For example, if a and b

are points whose world-space coordinates depend on state,
then a(q)�b(q) = 0 is a constraint that requires the points
to coincide. If multiple constraints are to be met simulta-
neously, then c is a vector all of whose components must
vanish. If the system begins in a legal state, with c = 0
and ċ = 0, then requiring that c̈ = 0 thereafter suffices
in principle to hold the constraints in force. c̈ depends on
the acceleration q̈, so requiring that c̈ = 0 defines a sub-
space of legal accelerations. Because q̈ in turn depends on
force, the problem of constrained dynamics is to calculate
a constraint force that projects the acceleration into the
legal subspace. Because it is expressed differentially, this
turns out to be a linear problem even when the constraints
depend nonlinearly on state.

To obtain the constraint equations we first express c̈ as
a function of q̈. Applying the chain rule twice gives

c̈i =
@ci

@qj
q̈j +

@ċi

@qj
q̇j +

@2ci

@t2
; (6)

noting that
@ċi

@qj
=

@2ci

@qj@qk
q̇k:

The term @2ci=@t
2 reflects the direct dependence, if any,

of c on time, in contrast to its indirect time dependence
through q.

The equations of motion in turn give q̈ as a function of
the known applied force Q and an as yet undetermined
constraint force C, according to

q̈j =Wjk(Ck +Qk);

where W is an inverse mass matrix. Substituting into
equation 6 and setting c̈ to zero gives

@ci

@qj
Wjk(Ck +Qk) +

@ċi

@qj
q̇j +

d2ci

dt2
= 0; (7)



where only the constraint force C is unknown. Equation
7 gives a set of linear conditions that C must satisfy, but
in general there are fewer equations than unknowns. This
deficiency is rectified by requiring that the constraint force
does not add or remove energy from the system, which
leads to the requirement, known as the principle of virtual
work, that the constraint force be a linear combination of
the constraint gradients. This in turn means that C must
satisfy

Cj = �i
@ci

@qj
;

for some vector �. The �’s are known as Lagrange mul-
tipliers. Substituting for C in equation 7, after some re-
arrangement, gives

�

�
@ci

@qj
Wjk

@cr

@qk

�
�r =

@ci

@qj
WjkQk +

@ċi

@qj
q̇j +

@2ci

@t2
;

(8)
in which the matrix on the left hand side is square, with
dimensions of the constraints, and only � is unknown.
The constraints are enforced by solving equation 8 for �,
using � to compute C, adding C to the applied force, and
computing the constrained acceleration q̈. In practice, an
additional feedback term must be added to the force to
inhibit drift, and also to bring the system to a legal state
initially. Including the damped feedback term, the total
force becomes

Qj + (�i + �ci + �ċi)
@ci

@qj
;

where � and � are constants.
Equation 8 refers to the entire constrained system. In a

system comprising a number of distinct objects, the global
state vector q is formed by concatenating those of the
original objects, and the constraint vector c is formed by
concatenating the constraints. The inverse mass matrix
W is block diagonal, receiving a block from each object.
The constraint Jacobian receives a non-zero block for each
constraint/object pair for which the constraint depends on
the object.

Although we have written the constraints as direct func-
tions of state, in practice there is usually an intermediate
quantity to which constraints are applied. For example, a
constraint that nails a pair of points together depends on
the points, and the points’ coordinates depend in turn on
the respective objects’ state. See [19] for a general parti-
tioning scheme that exploits this kind of structure. In brief,
if c is a constraint on one or more points, x is a point on
which c depends, and q is the state of the object to which
x is attached, then the chain rule gives

@ci

@qj
=

@ci

@xk

@xk

@qj
;

as the Jacobian block representing c’s dependence on q

through the point x.

3.2 Impulses

When very large forces act for very short times, producing
large transient accelerations, it is often useful to describe
the behavior of the system in terms of the integral over
the short time interval, neglecting the internal dynamics
of the event, and to treat the duration of the event as zero.
The force integral is known as an impulse. Instead of
accelerations, impulses produce instantaneous changes in
velocity. The calculation of an impulse response closely
resembles that of an acceleration. The equation q̈i =

wijQj becomes ∆q̇i = wijIj where I is the impulse, and
∆q̇ is the change in velocity. In computing an impulse all
non-impulsive forces, such as gravity, are neglected.

Impulses are most frequently encountered in the anal-
ysis of collisions. Here, we are interested in impulses in
connection with motion control, where we may wish to
allow the prescribed velocity of a controlled point to un-
dergo a discontinuous change. The desired discontinuity
appears in the direct derivative of the constraint with re-
spect to time, leading to an equation similar to equation
8:

�

�
@ci

@qj
Wjk

@cr

@qk

�
�r = ∆

@ci

@t
; (9)

where the right hand side gives the constraint discontinu-
ities. Once � is obtained, the constraint impulse is

I = �i
@ci

@qj
:

3.3 Linearly deformable bodies

Now we recast equation 8 for the special case of a sys-
tem of linearly deformable bodies, subject to constraints
each of which depends linearly on one or more points on
the bodies. This restricted class of constraints includes
point-to-point attachments, and constraints that nail points
in place or require them to follow arbitrary known trajec-
tories. This set is thus sufficient for building models by
attaching deformable pieces together, and controlling the
models by controlling the motions of specified points. The
benefit of imposing this restriction is a large one: the con-
straint matrix on the left hand side of equation 8 remains
constant, except when constraints are added or deleted.
The matrix is inverted whenever the constraint structure
changes, after which evaluating the constraint force re-
quires only a matrix multiply rather than the solution of a
linear system. Figure 2 illustrates the behavior of linearly
deformable bodies subjected to attachment constraints.

If x is a point on a linearly deformable body then its
derivative with respect to the body’s state is

@xi

@Rrs

=
@

@Rrs

�
Rijpj

�
= �irps;



which is a constant. Because each constraint is a linear
function of one or more points, the derivative of any con-
straint c with respect to a point x is a constant as well.
Hence the global constraint Jacobian is composed of con-
stant blocks each having the form �irps, possibly times a
constant. For example, a two-point attachment constraint
of the formai�bi = 0 yields two such blocks, one positive
and the other negative.

Because x is a vector and R is a matrix, the derivative
has rank 3. In practice, though, the R’s are flattened
and concatenated to form the global state, so that in an
expression like �irps, the r and s are combined to form a
linearized state index, and the quantity may then be viewed
as a block in the global matrix. The bookkeeping involved
in performing these index calculations is greatly simplified
by the use of a block-sparse matrix data structure, in which
a matrix is composed of a collection of rectangular blocks.
Operations such as matrix-times-vector and matrix-times-
matrix are readily implemented in terms of this structure.

Once the constant Jacobian matrix has been computed,
the left-hand-side matrix of equation 8 can be calculated
and inverted. Because ċ does not depend on q, one term
of the equation vanishes, giving

�r = �Yri(
@ci

@qj
WjkQk +

@2ci

@t2
); (10)

where Y is the inverted constraint matrix.

4 Motion Control

The preceeding sections provide the machinery required
to animate a collection of connected objects—a puppet,
for example—by moving control points on the puppet as
arbitrary functions of time. As the control points follow
their assigned paths, the rest of the puppet moves with
correct passive dynamics. We begin this section by con-
sidering the generic problem of constraining a point to
follow a known trajectory. Given this capability, we pro-
ceed to treat the issue of generating motion paths both by
interactive keyframing and by the specification of motion
goals.

A constraint that nails a point p at a fixed location n

may be written Rijpj � ni = 0: Such a nail constraint
depends on time only indirectly, through R, so that the
constraint’s contribution to the direct time derivative term
of equation 10 is zero. Suppose that the nail position n is
not constant, but is instead a known, twice-differentiable
function of time, n(t).2 By saying that n(t) is known, we
mean that we have a way to evaluate n, ṅ, and n̈ at the
current time. We need not know anything further about

2We may relax this requirement to piecewise differentiability by in-
serting impulses at velocity discontinuities.

the form of n or the manner in which it is computed. The
control constraint then becomes

Rijpj � ni(t) = 0;

with direct second time derivative

@2c

@t2
= �

@2n

@t2
:

Inserting this term into equation 10 induces a constraint
force that causes point p to move with the desired acceler-
ation. The feedback term

(�ci + �ċi)
@ci

@qj

inhibits drift from the desired trajectory. Note that

ċi = Ṙijpj �
@ni

@t
;

so that the feedback term as well as the constraint force
take account of the desired motion.

Depending on the acceleration supplied at each instant
in time, the control point can be made to accurately follow
any piecewise twice-differentiable trajectory. This form of
control is analogous to attaching a jet engine at the control
point and continuously adjusting its thrust to drive the point
along the desired path. Note that it is not necessary that
the path be completely specified in advance—only values
at the current time need be known.

Having the general ability to control the motion of points
on an object makes it possible to separate the problem of
motion specification from that of enforcing the specified
motion. We now consider two approaches to motion spec-
ification: keyframing, and goal-directed motion.

4.1 Keyframed Motion Paths

A direct extension of standard animation techniques is to
specify control point trajectories by interpolating between
keyframes. If a user is allowed to interactively position
control points on arbitrary frames, piecewise cubic splines
passing through the keyframed points suffice to provide
the required values for n, ṅ, and n̈ at each instant in
time. Provided that position and velocity are matched
at the beginning of a keyframed motion, our models are
able to track the keyframed paths accurately and stably at
interactive speeds.

Experiments quickly showed us that physical keyframe
control differs fundamentally from standard direct control
of object parameters. First, the quantities that we are able
to control are more likely to be the ones that we want to
control. Second, we are permitted to employ far fewer
degrees of control than degrees of freedom, the rest of the
motion being determined by physics. This is a property



with no counterpart in conventional keyframing, where
nothing moves unless we move it.

To fully exploit the ability to refrain from controlling
all aspects of the motion, control points ought not to be re-
garded as persistent entities whose keyframed trajectories
span an entire scene. The style of keyframe control that
we believe will be most effective is based on the ability to
freely turn control points on and off during an animation,
establishing and relinquishing control as required. For ex-
ample, in animating a walk it is necessary to control heel,
toe, knees, hips, shoulders, etc., but not all at the same
time. The heel position must be accurately controlled just
before and during the support phase, but during the swing
the heel can simply be allowed to follow the toe. It would
be an unnecessary burden to specify the heel’s position all
the time.

The ability to turn control points on and off raises tech-
nical issues. Turning a path constraint off is simply a
matter of letting the point “go ballistic,” eliminating the
relevant blocks from the constraint matrix, and turning
off the restoring forces. Turning a path constraint on in
the midst of an ongoing motion is more difficult: at the
moment that control is initiated, the position and velocity
of the point being controlled must match those specified
by the splined trajectory. However, the point’s state can-
not generally be predicted in advance. We handle this
problem using what we call constraint preroll, by analogy
to the video term. A short time before the nominal on-
set of control we dynamically compute a spline segment
that smoothly joins the point’s current position and veloc-
ity to those at the start of the pre-specified path. During
the preroll interval, this segment serves to bring the point
smoothly from its uncontrolled state to the required initial
state.

Impulses provide additional keyframing possibilities by
allowing control points to undergo arbitrary velocity dis-
continuities. For example, at the end of a motion path, it is
possible to insert an impulse that makes the control point
stop dead or “bounce,” simulating collisions. Although
not generally physical, starting a motion impulsively may
also produce interesting effects. We also use impulses as
a graceful way to start and stop animation runs. Before
starting the run, we use an impulse to install the initial
control point velocities, and at the end, an impulse is used
to bring them to an instant but well behaved halt.

4.2 Goal-Directed Motion

Keyframing of point trajectories, though offering real ad-
vantages over object-parameter keyframing, can still be
a frustrating process, primarily because motion must be
specified in such a literal way. For instance, the fact that a
reaching motion is intended to bring the hand into contact
with an object to be grasped is entirely lost in the transla-

tion to spline curves. If the object’s position is changed,
the hand will happily grab the empty space where it used
to be, unless the hand’s motion is manually changed as
well.

An alternative to keyframing is to specify the goals of
actions directly, dynamically calculating the motion re-
quired to satisfy them. In contrast to the first-principles
approach to motion synthesis described in [20], our ob-
jective here is to develop a minimal vocabulary of simple
behaviors that are chained to produce motion. With the
ability to control the motions of individual object points
already in hand, it is comparatively simple to develop a
variety of useful atomic actions. To implement an action
that governs the behavior of one or more points, we must
provide a way to compute the desired positions, velocities,
and accelerations, as a function of state and of time.

An example will illustrate the approach. Suppose we
want to make one point chase another, making contact at a
specified time, and with specified final velocity. If the tar-
get point is stationary, then a cubic spline segment can be
constructed, taking the chaser’s current position and veloc-
ity as initial conditions, and the position and velocity of the
target point as final conditions. As the motion progresses,
the spline and its derivatives are evaluated to supply the
desired position, velocity, and acceleration. This is equiv-
alent to the “preroll” segment described earlier. To chase
a moving target, we use its current position and velocity
to make a linear prediction of its position at the desired
time of contact, build a spline to that point, and continu-
ously update the estimate as things change. The action is
complete when the appointed contact time is reached.

Figure 3 shows some frames of a very simple anima-
tion in which a sky hook swoops down, grabs a pyramid,
flys off with it, then hangs itself up, leaving the pyramid
dangling. It was created using two primitive behaviors,
“Chase,” as described above, and “Connect,” which ap-
plies a velocity-matching impulse, then creates an attach-
ment constraint. For convenience, we define a behavior
“Grab” which performs a Chase followed by a Connect.
Having first created the geometry and defined some named
control points at strategic locations, we used the following
script to produce the motion:

Grab(hook tip,pyr tip, dt1, vx1, vy1)
Grab(hook eye,sky point, dt2, vx2, vy2)

where the dt’s and v’s are durations and final velocities
for the chase segments.

Figure 4 shows a more complex sequence in which a
hinge-horned monster skewers and ingests a small hu-
manoid. The fine grained action is as follows: the monster
waits until a humanoid comes in range, skewers it, moves
its “elbow” to a suitable spot, and accelerates the humanoid
to a point just outside its mouth. At just that moment, the
monster lets go, simultaneously stopping its claw, and the



humanoid pops neatly into the gaping jaws. Here is the
script, including interactively chosen values for timing and
velocity:

Wait For Humanoid()
Grab(claw tip,humanoid, 1.0)
Grab(elbow,feeding position, 1.0, 0, 0)
Grab(claw tip,mouth point, 1.0, -1.5,

-1.5)
Disconnect(claw tip,humanoid)
Grab(humanoid,gullett, .5, -.07, -.07)

When no final velocity is specified, “Grab” com-
putes a default based on the current position and veloc-
ity, duration and distance to the target. The predicate
“Wait For Humanoid” serves to trigger the action when
suitable prey comes within range. Unlike a conventional
animation script, this sequence defines what amounts to
a reflex. The monster responds to its environment, suc-
cessfully capturing its prey over a wide range of initial
conditions.

References

[1] William W. Armstrong and Mark W. Green. The
dynamics of articulated rigid bodies for purposes
of animation. In Visual Computer, pages 231–240.
Springer-Verlag, 1985.

[2] Alan H. Barr. Global and local deformations of solid
primitives. Computer Graphics, 18:21–29, 1984.
Proc. SIGGRAPH 1984.

[3] Ronen Barzel and Alan H. Barr. Topics in Physically
Based Modeling, Course Notes, volume 16, chapter
Dynamic Constraints. SIGGRAPH, 1987.

[4] Ronen Barzel and Alan H. Barr. A modeling system
based on dynamic constaints. Computer Graphics,
22:179–188, 1988.

[5] John E. Chadwick, David R. Haumann, and
Richard E. Parent. Layered construction for de-
formable animated characters. Computer Graphics,
23(3):243–252, 1989. Proc. SIGGRAPH 1989.

[6] Kurt Fleischer and Andrew Witkin. A modeling
testbed. In Proc .Graphics Interface, pages 127–137,
1988.

[7] Michael Girard and Anthony A. Maciejewski. Com-
putational Modeling for the Computer Animation of
Legged Figures. Proc. SIGGRAPH, pages 263–270,
1985.

[8] Herbert Goldstein. Classical Mechanics. Addision
Wesley, Reading, MA, 1950.

[9] Paul Issacs and Michael Cohen. Controlling dy-
namic simulation with kinematic constraints, be-
havior functions and inverse dynamics. Computer
Graphics, 21(4):215–224, July 1987. Proc. SIG-
GRAPH ’87.

[10] Alex Pentland and John Williams. Good vibrations:
Modal dynamics for graphics and animation. Com-
puter Graphics, 23(3):215–222, 1989. Proc. SIG-
GRAPH 1989.

[11] John Platt. Constraint Methods for Neural Networks
and Computer Graphics. PhD thesis, Caltech, 1989.

[12] John Platt and Alan Barr. Constraint methods for
flexible models. Computer Graphics, 22:279–288,
1988.

[13] Peter Schroeder and David Zeltzer. Dynamic sim-
ulation with linear recurive constraint propogation.
Computer Graphics, 24(2):23–32, March 1990.

[14] Thomas Sederberg and Scott Parry. Free-form defor-
mation of solid geometric models. Computer Graph-
ics, 20(4):151–160, 1986. Proc. SIGGRAPH 1986.

[15] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. Elastically deformable models. Computer
Graphics, 21(4), July 1987. Proc. SIGGRAPH ’87.

[16] Demetri Terzopoulos and Andrew Witkin. Physically
based models with rigid and deformable components.
In Proc. Graphics Interface, pages 146–154, Edmon-
ton, Alberta, Canada, June 1988.

[17] Jane Wilhelms and Brian Barsky. Using dynamic
analysis to animate articulated bodies such as humans
and robots. Graphics Interface, 1985.

[18] Andrew Witkin, Kurt Fleischer, and Alan Barr. En-
ergy constraints on parameterized models. Computer
Graphics, 21(4):225–232, July 1987. Proc. SIG-
GRAPH ’87.

[19] Andrew Witkin, Michael Gleicher, and William
Welch. Interactive dynamics. Computer Graphics,
24(2):11–22, March 1990.

[20] Andrew Witkin and Michael Kass. Spacetime con-
straints. Computer Graphics, 22:159–168, 1988.



Figure 1: A three-dimensional second-order deformable
object. The object is shown above in its undeformed state.
Below it is shown deforming in response to a leftward pull,
while its right-hand corners are held in place. This object
can bend, whereas an affine body may only stretch and
shear.

Figure 2: A two-dimensional triple pendulum moving un-
der the influence of gravity. The pendulum, which is nailed
in place at the top, is composed of affine-deformable parts
connected using attachment constraints. The frames for
all sequences are ordered top-to-bottom, then left-to-right.



Figure 3: Animation created by chaining motion goals. A
sky hook swoops down to grab a pyrmid, then hangs itself
up.

Figure 4: A hinge-horned monster skewers and ingests a
small humanoid. This compound behavior is in effect a
reflex, triggered by the arrival of suitable prey, which exe-
cutes successfully over a wide range of initial conditions.


