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Abstract
We present an approach to modeling with truly mutable yet com-

pletely controllable free-form surfaces of arbitrary topology. Sur-
faces may be pinned down at points and along curves, cut up and
smoothly welded back together, and faired and reshaped in the large.
This style of control is formulated as a constrained shape optimiza-
tion, with minimization of squared principal curvatures yielding
graceful shapes that are free of the parameterization worries accom-
panying many patch-based approaches. Triangulated point sets are
used to approximate these smooth variational surfaces, bridging the
gap between patch-based and particle-based representations. Au-
tomatic refinement, mesh smoothing, and re-triangulation maintain
a good computational mesh as the surface shape evolves, and give
sample points and surface features much of the freedom to slide
around in the surface that oriented particles enjoy. The resulting
surface triangulations are constructed and maintained in real time.

1 Introduction
One of the fundamental goals in computer-aided free-form shape

design is to offer convenient ways to specify shape and topology.
We are concerned here with a truly broad class of surfaces: smooth,
doubly curved surfaces, of arbitrary topology (closed or bordered).
This generality is what makes representing and controlling such
shapes on a computer a difficult problem.

1.1 Functional minimization for shape design
Optimization has long been used as a way of describing fair free-

form shapes (a good survey is Moreton[23]). More recently, it has
come to be used in interactive modelers[4,5,41,18]. Though such
approaches are computationally complex, their intent is to create an
illusion of simplicity for the designer. Ideally, the designer sees a
surface having no particular fixed controls or other representation-
specific parameters. Instead, the surface can be directly manipu-
lated, pinned down at points and along curves, and will behave as if
made of some infinitely stretchy material. This lets us mimic a style
of pen-and-paper design in which important contours of a shape are
sketched out as “character lines”, with the understanding that a sur-
face passes through them in a fair way[4]. Such shapes are ulti-
mately realized as solutions to constrained functional minimization
problems — globally fair surfaces that satisfy geometric interpo-
lation constraints. This approach allows concise descriptions of a

useful class of free-form shapes.
Unfortunately, these approaches have only allowed a designer to

interact with pre-fabricated families of shapes, in which the topol-
ogy remains fixed and surfaces do not stray far from their initial
configurations. More drastic, nonuniform deformations are not han-
dled well by the linearized thin plate functional[30] used to fair the
piecewise smooth patches making up these surfaces. Further, no
real consideration has been given to the problem of creating non-
trivial smooth surface topologies interactively. The one approach to
fair shape design that has allowed large-scale changes in shape and
topology during sculpting is the oriented particle system of Szeliski
and Tonnesin[34]. The drawback of this approach is that there is
noexplicitcontrol over surface topology — because there is no ac-
tual surface. A surface triangulation can be imposed on the particles
strictly as an output, but this has no influence on the particles’ sub-
sequent behavior, and no persistence across sculpting operations.

1.2 Our approach
In this paper we continue with the agenda set forth in [41] and

develop an approach to modeling truly mutable yet completely con-
trollable free-form surfaces.

Our basic approach to shape control will use character lines and
curve and surface fairing. To this we add:

� the ability to cut up surfaces and paste them back together
smoothly, without topological restriction, thus building up
complex topologies incrementally.

� the ability to seamlessly incorporate familiar shape control
tools (e.g., generalized cylinders) into more complex faired
surface models, using local shape-copying.

� a fairing functional based on geometric surface properties,
which yields graceful shapes in the face of large-scale changes
to surface shape and topology.

As with previous work, the shape design problem will be cast in
terms of functional minimization: the desired shape will be the one
that satisfies various geometric constraints while optimizing a mea-
sure of surface quality. Since explicit functional solutions to these
minimization problems cannot generally be found, we will construct
approximate solutions using an explicit surface representation.

In choosing a representation, we bridge the gap between the
patch-based and particle-based approaches by adding just enough
structure to a particle system to unambiguously fix its topology. To
this end, our chosen representation is a set of sample points in three-
space, triangulated to yield a 2D manifold topology. Although the
resulting surface approximations will be faceted rather than smooth,
we never lose sight of the fact that the implicitly defined variational1

surface is the “real” surface. A designer interacts only with these
approximate renderings, but always with the understanding that op-
erations will be interpreted as implicitly defining an ideal variational

1We use “variational” in its mathematical sense as the solution of a prob-
lem in calculus of variations[7]. Unfortunately, this clashes with a different
usage common in design literature.
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Figure 1: Making a Torus: 1. A closed curve is skinned to make a disc. 2. another closed curve is drawn on disc and elevated (this will
control the inner torus shape). 3. A hole is cut in center of disc and the new boundary curve elevated. 4. The upper curve is expanded
to match the lower. 5. Two boundary curves are skinned to make a single toroidal surface passing through the three control curves
(200 nodes). 6. Refinement (1300 nodes. All surface meshes are rendered with Gouraud-shaded triangular facets.)

surface. Such shapes can thus be unambiguously specified and con-
trolled through direct manipulation, regardless of the coarseness
of their explicit approximations. If an explicit smooth surface is
needed for any reason, it is a straightforward task to fit one to the
triangulated surface in a post-processing step[24].

1.3 Outline of this paper
After a brief overview of our approach to variational sculpting

and its underlying machinery, the bulk of the paper (sections 3–5)
develops the mathematics and algorithms needed to construct ap-
proximations to these variational surfaces. In section 6 we discuss
some specific higher-level shape tools and operations formulated
within this variational framework. Section 7 concludes with a dis-
cussion of the work’s contributions and some suggested directions
for future research.

2 Overview
2.1 Triangulated surface representation

This work develops an approach to interactively sculpting with
variational free-form curves and surfaces. Because such shapes gen-
erally cannot be explicitly computed, we are concerned with approx-
imating these surface shapes at interactive speeds.

Our representation for the topology and approximate shape of a
variational surface is a set of sample points in 3D with an associated
surface triangulation (we will often refer to this simply as a mesh).
These meshes are represented in our modeler as collections of nodes
with radially ordered neighbor relations. Curves are approximated
as piecewise-linear (PWL) sequences of nodes joined by edges. We
will sometimes need to operate on an embedded curve in a surface,
such as a boundary or control curve. In this case the nodes and edges
making up the curve must be contained in the mesh as well.

No assumptions are made about the three-dimensional shape of
the mesh. In particular, there are no flatness assumptions, and we

will not detect or prevent self-intersection. However, the triangula-
tion itself must completely determine the topology of the surface
that is being approximated. Regardless of the coarseness of the
sampling, a triangular facet in the mesh should always correspond
to a continuous triangular piece of the approximated surface, and
a closed PWL boundary curve in the mesh should exist for each
boundary curve in the smooth surface.

2.2 Approximating surface shapes
A fair amount of computational machinery goes towards main-

taining variational shape approximations interactively (in spite of
our initial minimalist intentions). We break the approximation prob-
lem into a number of reasonably simple pieces, most of them tran-
scending our choice of a point-wise surface (as opposed to, say,
smooth triangular patches) as the approximating representation. At
the lowest level, local surface reconstruction lets us compute over
a mesh as if it were a smooth surface, by estimating surface deriva-
tives at sample points. On top of this is built a surface fairing scheme
that minimizes squared principal curvatures. Because an even dis-
tribution of samples over a surface improves the results of such fair-
ing computations, we apply techniques from numerical grid genera-
tion to keep samples well-dispersed. Finally, automatic refinement
and retriangulation processes adapt the mesh density and connec-
tivity as surface shape and area changes, and give sample points
and local features much of the freedom to slide around within a sur-
face that oriented particles enjoy. In order to fix some of the ideas,
consider the simple construction sequence illustrated in Figure 1,
which demonstrates point and curve skinning, automatic shape fair-
ing over wide ranges of deformation, interactive changes to topol-
ogy, and automatic mesh refinement. Other aspects of our approach
— parameterized shaping tools and smooth surface surgery, can be
seen in Figures 6 and 7.

In the following sections we detail a collection of robust proce-
dures (some of them new) for controlling the local shape and topol-

SIGGRAPH ’94 Preprint 2 Not for distribution



1

2

3

4

5

6

1

23

4

5

6

Figure 2: A failed neighborhood projection.

ogy of a mesh. Many schemes for operating on and computing over
such unstructured meshes are made with reference to a separate pla-
nar domain — either a global parameterization, or a local projec-
tion of part of the mesh onto a plane. Such approaches will not be
directly useful to us. On the one hand, a well-known result from
differential topology implies that we cannot hope to find global pa-
rameterizations for surfaces of arbitrary genus2. On the other hand,
local planar projection operations can fail if the mesh is not suffi-
ciently flat (or an unfortunate choice of projection plane is made),
for then the projection may scramble the radial order of neighbors
about a node (Figure 2). Our modeler must behave robustly in such
configurations, always honoring the given neighborhood topology
at each node.

3 Local shape reconstruction
Fundamental to our approach is the ability to operate on the mesh

as a sampling of a smooth surface. To do so, in addition to sample
point positions we also need to be able to evaluate surface deriva-
tives at each of these points. This will be done by temporarily fitting
a smooth surface to the neighborhood around a sample point.

Because we will ultimately control sample point positions indi-
rectly, by solving for positions that yield desired surface properties,
there will be great advantage to having such derivatives be linear
functions of the sample point positions. This rules out direct ge-
ometric constructions[21] as well as algebraic fitting methods[28].
Algebraic methods have the added drawback that they do not allow
us to incorporate topological constraints like radial neighbor order-
ing into the fit.

Instead, following a standard approach to constructing finite dif-
ference stencils over a computational field[12], we will fit a trun-
cated Taylor series expansion at a neighborhood around a point.
This approach yields the desired linearity, but it comes at the ex-
pense of having to construct a separate bivariate parameterization
over which to evaluate the polynomial basis functions. We’ll make
the most of this by constructing the parameterization in such a way
that it gives the fairing functional (Section 4) a particularly simple
form.

3.1 Neighborhood parameterizations
Much of the theory of curves and surfaces is developed in terms

of curves parameterized by arc-length[25]. Geometric quantities,
such as curvature, have simple expressions with respect an arc-
length parameterization. The geometric fairing functionals of the
next section will involve differentiation with respect to arc-length,

2the Poincar´e-Hopf Index theorem on the existence of smooth vector-fields
over manifolds[15], which says, informally, that you cannot comb the hair
on a ball without leaving a crown somewhere.
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Figure 3: Surface neighborhood parameterization: angles be-
tween neighbors are measured in 3D, then scaled to sum to2�.

so we want to use arc-length parameterizations in our local recon-
structions to simplify these computations.

For surfaces, there is no corresponding notion of an arc-length
parameterization; but there is a construction from differential geom-
etry, thegeodesic polar map[25], which serves our needs in much
the same way. This is simply a generalization to geometric surfaces
of polar coordinates (r; �) in the plane. A map is constructed for a
neighborhood about a given point on the surface, in such a way that
a unit-speed geodesic path is associated with each tangent direction
(�). Directional derivatives computed at the point in any tangent
direction are thus taken with respect to an arc-length parameteriza-
tion.

In fitting a parametric curve to a sequence of scattered points, it
is necessary to first assign parametric coordinates to these points.
Prior to the fit, we cannot assign these coordinates based on arc-
length because we have no curve. So instead, we will make a
chord-length approximation to an arc-length parameterization[9,8],
in which the parametric interval between two samples is taken to be
the 3D Euclidean distance between them.

In constructing a neighborhood parameterization for surface fit-
ting, it is common to project neighboring vertices in 3-space onto,
e.g., the node’s tangent plane. As was pointed out earlier, this is a
hazardous operation. The surface triangulation induces an ordering
on neighbors about each node and this order should be reflected in
the parameterization, but there is no guarantee that projection will
do so. Instead of projecting onto a plane, we measure the angular
separation between each neighborin 3D, and then uniformly scale
these angles so that they sum to 2� for nodes in the surface interior
and� for nodes on the boundary (Figure 3). Using a chord-length
approximation to arc-length, the Euclidean distance from the cen-
ter node to each of its neighbors is taken as the radial parametric
separation, mimicking the geodesic polar parameterization.

3.2 Local coordinate fitting
Given a suitable parameterization of the neighborhood, it is a

straightforward task to fit a truncated Taylor series expansion for
each of the surfacex, y, andzcoordinate functions about the neigh-
borhood center. In the following,p0 will designate the position of
the node at the neighborhood center,p1:::pn the positions ofp0’s n
neighbors, and(u0; v0):::(un; vn) their parametric coordinates.

For each of the coordinate functions we seek the coefficients of
a biquadratic:

s(u; v) = c0 + c1 u+ c2 v+
c3

2
u2 + c4 uv+

c5

2
v2 (1)

= b(u; v)c; (2)

whereb(u; v) is the basis row vector [1; u; v; 1
2u2

; uv; 1
2v2], andc a

column vector of coefficients. We wants(u0; v0) � s(0; 0) = p0;
this requiresc0 = p0 (here we takepi to mean one ofpix; piy; piz,
since the same fitting procedure applies to each).The remaining
coefficients will be determined such that thes(ui ; vi) are a least-
squares fit to thepi :
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Shifting the origin top0 yields the vector of shifted neighbor po-
sitionsq = [p1 � p0; :::; pn � p0]T. The sample matrixS for this
shifted, center-constrained system is built by evaluating the basis
vectorb(ui ; vi) for each of the neighbors and collecting these rows
into a matrix, then deleting its first column. ThenS[c1; :::; c5]T = q;
and the least-squares solution forc1:::c5 is

[c1; :::; c5]
T = [STS]�1STq (3)

= Zq: (4)

To put this in a more convenient form as a linear function of the
pi , letz represent the vector sum of the columns ofZ andP represent
then� 3 matrix of thepi ’s x; y; z coordinates. The vector form for
the reconstructed surface positionss(u; v) is then

s(u; v) = b(u; v)

�
1 0
�z Z

�
P (5)

= b(u; v)BP: (6)

This fitting procedure is somewhat complicated by the irregu-
lar degrees of the triangulated nodes since it requires that every
node have at least five neighbors (a radial ordering for nodes beyond
the immediate neighbors is not determined by the triangulation, so
we do not search beyond the neighborhood to bring in additional
samples as is common in least-squares schemes[13]). Worse, even
though a node may have five neighbors they may be positioned para-
metrically so as to make the full biquadratic fit ill-conditioned.

In this case, a reduced polynomial basis function is used. For
each node (of sufficient degree), an initial fit of the full basis
[1; u; v; 1

2u2
; uv; 1

2v2] is attempted. The condition number of this fit,
c = kSTSk � k(STS)�1k, is then computed (where the matrix norms
are Frobenius norms[14]).

If the fit was ill-conditioned (say,c > 1000), or if there were too
few neighbors, a fit is attempted with the reduced basis functions
[1; u; v; 1

2(u
2+v2)] for interior nodes3. Boundary nodes, which will

rarely have enough neighbors for a full fit, are treated specially: the
parameterization is constructed so that the two boundary nodes lie
on the�u axis, and the basis functions [1; u; v; 1

2u2] are used. This
lets a surface curve along its boundary while remaining flat in the in-
field direction. As before, the condition number is evaluated and an
ill-conditioned fit rejected. As a last resort, a planar fit (for boundary
or infield nodes) is made with the basis functions [1; u; v].

A shortcoming of this approach is that the somewhat arbitrary
choice of basis functions could lead to instability over time (though
we have not observed this, a neighborhood that is nearly well-
conditioned might switch back and forth between different sets of
basis functions). Better would be to consistently use the same set of
basis functions and optimize some auxiliary norm in the underde-
termined case, as in Barth [1]. This requires an orthogonal decom-
position ofSTS, an added computational expense that degrades the
overall interactivity of the modeler.

3.3 Curve reconstruction
Smooth neighborhoods for PWL curve approximations are com-

puted analogously to the fitting procedure for surfaces. A chord-
length parameterization is used, along with the basis functions
[1; u; 1

2u2].

4 Surface fairing
In this section we formulate constrained fairing for triangulated

surfaces. Surfaces will seek shapes that minimize a global measure

3It is tempting to damp the second-order terms in the system matrixSTS
to insure well-conditioning without these repeated fitting attempts, but this
noticeably degrades the fairing in Section 4.

of curvature, subject to the requirement that they interpolate speci-
fied control points and curves.

4.1 Smooth surface objective
We take as the surface fairing objective function the integral of

the squared principal curvatures over a smooth surface[25]:

E =

Z
S

(�2
1 + �

2
2)dA; (7)

wheredA is the differential area form. Lott and Pullin [20] used
this for surface fairing because of its relationship to the strain energy
of a thin elastic plate. Unlike the more commonly used linearized
thin plate approximation[4,41,35,18], this formulation does not cre-
ate shape artifacts related to an underlying fixed surface parameter-
ization. E is a geometric quantity whose definition is independent
of parameterization.

Recall from the differential geometry of surfaces that information
about the curvature of a surface at a point is given by the second
fundamental form[32]. The normal section curvature of a surface
s(u; v) in the direction of a parametric unit tangentt = [tu; tv] is
given by� = II(t; t); where

II(t; t) = tT

�
suu � n suv � n
svu � n svv � n

�
t; (8)

n is the surface unit normal, and subscripts indicate partial differen-
tiation with respect to arc-length. It is straightforward to show that
the squared Frobenius norm of the matrix is equivalent to�

2
1 + �

2
2.

This lets us reformulate the objective functionE in terms of the sur-
face derivatives and normals appearing in these matrix elements:

E =

Z
S

((suu � n)
2 + 2(suv � n)2 + (svv � n)2)dA: (9)

4.2 Triangulated surface objective
For a triangulated surface this integral is approximated as an area-

weighted sum of integrands over sample points:

E =
X
nodes

((suu(0; 0) � n)
2 + 2(suv(0; 0) � n)

2 + (svv(0; 0) � n)2)a;

(10)
wheres(0; 0) is the local surface function (6) evaluated at its node,
anda the node’s associated area (nominally, 1=3 the area of each of
the triangles in its parametric neighborhood). Because the neighbor-
hood parameterization was constructed so that directional deriva-
tives are computed with respect to an approximate arc-length pa-
rameterization, the partial derivatives above are simply taken with
respect to the localu andv. The assumption here is that these pa-
rameterizations are being continually updated as the surface shape
changes; whether or not this is a good way to approximate differ-
entiation with respect to arc-length (to be characterized in[40]), the
resulting objective function is geometric in nature, so that our sur-
face fairing does not exhibit parameterization artifacts.

Substituting (6) and evaluating the derivatives of the basis func-
tionsb(0; 0) leads to a particularly simple form forE:

E =
X
nodes

((B3P � n)
2 + 2(B4P � n)

2 + (B3P � n)
2)a (11)

whereBj is thejth row of theith neighborhood basis matrix.
The dependency ofE on the node positions is given by its gradi-

ent with respect toP. To make the minimization ofE tractable, we
take then anda to be constant when computing this gradient, and
will refer to this modified objective aŝE. This makeŝE quadratic
and positive definite ins’s parametric derivatives, and similarly in
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the node positions, thus guaranteeing a unique minimum. Note that
theE itself isnot a quadratic function of the node positions, and so
a single minimization of̂E with fixed n anda will not in general
minimizeE. We will return to this point shortly.

In manipulating gradients of̂E it will be notationally convenient
to consider a “flattened”P, formed by concatenating itsx; y; zcom-
ponents into a single long vector�P. BecausêE is purely quadratic
in P, it is possible to write it in the form̂E = �PTH�P; whereH is a
constant, 3n� 3n matrix. In the constrained minimization scheme
below,H will never actually be computed and stored as a monolithic
matrix; instead, vector products withH (and sub-matrices ofH) will
be computed. This is done by looping over the nodes, accumulating
each neighborhood’s contribution to the product. Some rearrange-
ment of (11) yields a convenient form for this matrix-vector product:

H�P =
X
nodes

n(P n)T(BT
3B3 + 2BT

4B4 + BT
5B5)a (12)

(note that theBj are row vectors). In addition to saving on the work
of constructingH, this multiplication scheme also exploitsH’s in-
herent sparsity without any additional effort on our part.

4.3 Curves
Before taking up the constrained minimization ofE, we briefly

mention fairing for point-sampled curves. This is well-trodden
ground ([19]), but to keep our presentation self-contained we point
out that the geometric curve fairing objective

E =

Z
�

2ds; (13)

can be formulated analogously to the surface objective above. The
shapes of space curves in our modeler are controlled this way, sub-
ject to point interpolation constraints, below. They in turn con-
trol the shapes of embedded surface curves, with corresponding
sequences of surface nodes constrained to track the nodes of free-
standing curves.

4.4 Geometric constraints
Point and curve interpolation constraints on a surface are en-

forced by simply freezing the positions of their associated nodes
during fairing. A frozen node is no longer considered an indepen-
dent variable, but it contributes linear terms toÊ. Splitting �P into
unconstrained and constrained parts�Q and�R and partitioningH ac-
cordingly,

Ê = [ �QT�RT]

�
HQQ HQR

HRQ HRR

��
�Q
�R

�
(14)

The gradient of̂E with respect to the active nodes is then

rÊ = HQQ�Q + 2HQR�R: (15)

We mention in passing another useful constraint, thehinge[4],
which allows cross-boundary tangents along a surface boundary to
be controlled. Under our scheme, with boundaries aligned para-
metrically in theu direction, this amounts to constrainingsv(0; 0)
(which is simplyB2P) at each point on the boundary. This con-
straint cannot be directly enforced by freezing independent vari-
ables, as was done with point constraints, so a penalty[27] or La-
grange multiplier[33] technique should be used.

4.5 Minimizing the objective
To minimizeÊ subject to the point constraints, we solve for the

�Q yielding rÊ = 0. Rather than formH explicitly, the system

collapse split

swap

Figure 4: Mesh transformation operators: edge split, edge col-
lapse, and edge flip. These change the mesh without altering its
manifold topology.

is solved using a conjugate-gradient method[33], which only re-
quires matrix-vector products withH, not an explicit representation
H itself4.

As was mentioned, a single minimization ofÊ does not in gen-
eral minimizeE. This minimization will be iterated as the user in-
teracts with the surface, each time reparameterizing neighborhoods
then using the current surface normals and areas in evaluatingÊ. It
is tempting to claim that when (if) the surface reaches equilibrium,
it will have approached the minimum forE; but this disregards the
possibility that the ignored gradient terms are nonzero. In any event,
the resulting shapes are visually pleasing, and an accurate minimiza-
tion of E thus seems less important here than the added speed and
robustness that have been gained through the linearization.

There is little we can say formally about the conditions under
which this iterative scheme converges to an equilibrium; but in our
experience the minimization has been well-behaved over a wide
range of configurations. As with almost any nonlinear optimiza-
tion, a caveat is that “reasonable” initial surface shapes must be
used. This has not been a problem in our interactive system because
changes to shape are generally incremental. There are configura-
tions in which curvature minimization is undesirable as an objec-
tive function, as with narrow cylinders (which collapse). A mini-
mum curvature variation functional, as in Moreton and S´equin[22],
would remedy this problem; but it is not clear how to compute the
curvature derivatives given our local quadratic reconstructions, and
we leave this as future work.

5 Surface sampling
Taking the view that a mesh is a discrete sampling of some

smooth underlying surface, it is important that the surface be sam-
pled sensibly. In our case, “sensibly” means samples are distributed
and triangulated so as to give good neighborhood shapes, so that
local polynomial fitting is well-conditioned. It also means sam-
ples are distributed for speed and accuracy in the global approxi-
mation. While there is no numerical harm in having many samples
clumped together in an uninteresting place on the surface, their pres-
ence needlessly slows down the computation. On the other hand, a
large gap in sampling over an area will poorly resolve the shape.
Since we generally do not know surface shapes or topologiesa pri-
ori, the surface sampling and triangulation must be controlled dy-
namically as points move about and neighborhoods change shape.

4To maintain interactivity as this system increases in size, we allow the
conjugate gradient solver only a fixed number of iterations (10–20) per
solve/redraw cycle. A (not unpleasant) side-effect of this is an illusion of
viscous drag as the solution converges over time.
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5.1 Sample point distribution
We begin with the problem of maintaining a uniform sampling

density over a surface. One approach that has been used success-
fully for both smooth and polyhedral surfaces is point repulsion[29,
38,39,42]: points move under the influence of mutual repulsive (or
attractive) forces between points, constrained to act within the sur-
face. In these schemes, a pair of points’ influence on each other falls
off as an inverse power of their separation. Ideally, this separation
is measured in terms of geodesic distance on the surface, since in
a highly curved surface, two points that are nearby geometrically
may be far apart geodesically. As a practical matter, these schemes
project a 3D neighborhood (there being no triangulation to deliver
up a surface neighborhood) onto each sample point’s tangent plane
and measure these projected distances. Forces are accumulated to
produce a velocity for each point, and as points are moved in these
directions they must be repeatedly pushed back onto the surface to
counter this integration drift.

These schemes work best when sampling is dense enough that
repulsion forces are acting over small distances and neighborhoods
are not highly curved (these assumptions are implicit in making the
above-mentioned projections). Interestingly, these methods do not
break down when the assumptions fail. So long as there is a robust
procedure for returning points to the surface after integration error
has moved them off, it doesn’t really matter if some point acciden-
tally lands in a geodesically distant location (assuming this behavior
doesn’t prevent the method from reaching equilibrium). However,
this is behavior is clearly disastrous if we are dragging a triangula-
tion along with the points, as in our application.

We consider instead a parametric repulsion scheme that uses the
neighborhood structure given by the triangulation to avoid making
wild leaps off the surface. In place of a neighborhood projection
onto a node’s tangent plane, we use the geodesic polar parame-
terization of Section 3.1. Since this includes only the neighboring
points in the triangulation (whereas a repulsion scheme relies poten-
tial interactions between all points) we will optimize the placement
of the node within this polygonal neighborhood. Imagining a uni-
form continuous distribution of samples within the neighborhood,
the equilibrium position for the node under anr2 repulsion/attraction
scheme would be the centroid of the polygon.

We move the point parametrically towards the neighborhood cen-
troid, then the local surface function is evaluated to determine the
new node position in 3D. This avoids the need to project the point
back onto the surface after integrating a 3D velocity vector. Thus
the scheme will work properly even in situations where a neighbor-
hood’s shape is folded over or collapsed. Note that this treats the
surface as if it were a (non-smooth) union of quadratic bowls, over
which samples are sliding.

As it happens, this method is closely related to a “mesh improve-
ment” scheme calledLaplacian smoothing[11], so named because
its fixed point is an approximate solution to Laplace’s equation over
the mesh. In fact, Laplace’s equation is ubiquitous in computational
mesh generation[36,37], arising naturally from a variational formu-
lation of a uniform-density objective. We experimented with form-
ing the Laplacian over a surface mesh, in terms of locally recon-
structed neighborhoods[17], and solving the resulting global error
minimization for point positions. In practice, we found that this was
more robust than the purely local scheme above, but was more ex-
pensive to compute, and in the end we reverted to the local scheme.

5.2 Sample point density
We use a simple spatial refinement/un-refinement scheme to con-

trol the local density of sample points. Node separations are mea-
sured in 3D, and an edge-splitting refinement (see Figure 4) is trig-
gered if any two neighbors are too far apart. Similarly, if any node
is too close to each of its neighbors, the node is destroyed using
an edge-collapse operation. Both of these operations preserve the

surface topology, and Hoppe, et. al.[16] showed that they are suf-
ficient to transform any surface triangulation into any other of the
same topological type.

5.3 Surface triangulation
The sample distribution scheme just presented moves nodes

around within their respective triangulated neighborhoods. In ad-
dition to this neighborhood smoothing, we will dynamically main-
tain a quality triangulation over the nodes as they change position.
In addition to the numerical conditioning benefits that result from a
good triangulation, this will also have the effect of allowing nodes to
migrate across neighborhoods. Surface features like bounded sub-
regions and embedded curves will be free to slide around relative to
each other within the surface triangulation (e.g., the final frame in
Figure 5).

Field[11] has shown that combining a Laplacian neighborhood
smoothing scheme and Delaunay triangulation (DT) tends to pro-
duce nice triangulations. For our meshes we will work with a gen-
eralization of the planar DT due to Chew[6]. He generalizes the
“empty circumcircle” characterization of the planar DT to one of
empty circumspheres on a surface, and proves that it retains many of
the desirable properties of the planar DT. The surface DT maximizes
the minimum angle in the triangulation (measured in 3D), and thus
eliminates skinny triangles. Further, this globally optimal triangula-
tion can be constructed from any other surface triangulation by a se-
ries of local edge-flip operations(Figure 4), each of which increases
the minimum angle within some quadrilateral in the mesh. These
edge-flips preserve the topological type of the surface, so there is
always a valid mesh as retriangulation progresses.

5.4 Constrained triangulation
In constructing the surface DT given an initial surface triangula-

tion, there will be edges that must not be disturbed, such as those that
are part of embedded control curves. A scheme that incorporates
thesesource edgesis referred to as aconstrained Delaunay trian-
gulation, or CDT [2]. It enjoys the same minimum-angle property
as the DT (over all triangulations which include the source edges),
and this leads directly to theflip algorithmfor restoring a CDT given
an initial triangulation:

Algorithm Restore-CDT[2]: For an edgee not a
source edge,Qe is the quadrilateral formed by taking the
two triangles on either side ofe. We say thatQe is re-
versedif e forms a smaller minimum angle with the out-
side edges than the other diagonal does. Initially, put all
non-source edges into a queue. Repeatedly remove the
first edgee, each time checking to see ifQe is reversed. If
so,e is flipped in the triangulation, replacing it withQe’s
other diagonal. The non-source edges ofQe are added
to the queue (if not already present). When the queue is
empty, the CDT has been restored.

This terminates in at mostO(edges2) flips, but in practice we see
only a few flips at any one time. We can introduce a bit of hysteresis
by only flipping edges if they increase their local minimum-angle
by some small minimum. This produces an approximate CDT by
making edges somewhat more reluctant to flip.

A technicality of this definition of the surface DT is that the gen-
eralization of consistent circumcircles to circumspheres on surfaces
depends on a local flatness assumption: that no dihedral angle ex-
ceeds�=2. Rather than enforce this requirement by refining the
triangulation in highly curved neighborhoods, we have found that it
works well in practice to relax the requirement by maintaining only
an approximate DT. Edges with sharp dihedral angles are treated
as temporary source edges and are not allowed to be flipped, thus
preserving the algorithm’s termination guarantee.
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In our modeler, Restore-CDT runs continually, interleaved with
steps of the shape optimization, so that a quality mesh is always
present for computation. An important aspect of this is approach is
that we always begin with valid surface triangulation. Improving
the quality of a surface triangulation is much simpler than attempt-
ing to impose a surface triangulation on a collection of scattered
points (hence inferring a surface topology) — and it is guaranteed
never to fail. In keeping with this approach, modeling operations
which change the mesh structure or surface topology (Section 6.3)
must do so in controlled ways that always leave a valid triangula-
tion.

6 Operations on surfaces
The previous three sections develop sufficient machinery to ap-

proximate faired surfaces that interpolate shape control curves. In
this section we consider using this machinery as a basic computa-
tional substrate for free-form modeling. Recall that in this approach
a designer will interact only with approximate renderings of sur-
faces, but that anything done to a surface model must be interpreted
in terms that define an ideal variational shape.

We consider here some basic modeling operations cast in terms of
our variational substrate. The intent is to illustrate important consid-
erations in using variational surfaces as a basic shape representation,
rather than offer an exhaustive set of sculpting operations. A com-
mon theme is that of carving a surface up into disjoint regions and
designating a shape controller for the nodes in each region. Mixing
explicit shape control for some regions and functional minimization
for others will allow us to construct structured models for parame-
terized free-form shapes.

6.1 Embedding control curves
A surface control curve is specified by designating a series of (not

necessarily neighboring) points on the surface that the control curve
should pass through. These points may be specified by a designer
“drawing” a curve on a triangulated surface, or may be created au-
tomatically by the modeler as part of a composition operation dis-
cussed in this section.Face splittingis used to allow such points
to be placed at arbitrary locations on the surface. This operation
adds a new node in the middle of a triangular face and connects it
to each vertex of the triangle (equivalent to an edge-split followed
by an edge-flip, with suitable repositioning of the new node). Once
the desired anchor nodes have been inserted into the mesh, a se-
quence of nodes and edges is inserted to join the designated nodes
in a PWL curve. One way to insert a curve connecting two nodes
is to first find a sequence of abutting faces that connect them; their
union then forms a polygonal channel into which a curve connect-
ing the two nodes can be inserted by splitting each edge that crosses
the channel. Once the surface curve has been created, a matching
space curve is created (with point constraints at the original anchor
positions) and the surface curve is constrained to follow it. Note that
our procedure needn’t create a particularly straight surface curve, or
leave a particularly nice triangulation (it does neither), since fairing
and Delaunay triangulation will subsequently neaten things up.

6.2 Bounded surface regions
Many computations are meant to be performed only on some

subset of the surface (e.g., splitting operations, or the application
of shaping tools to surface regions). This will require that sur-
face nodes and edges be classified as being inside, outside, or on
the boundary of a surface region delineated by an embedded closed
curve. The classification is straightforward if performed edge-by-
edge:

Algorithm Find-Interior-Edges: Given an edge
eseedin the interior of the region to be collected, a closed
series of edges representing the region boundary, and a

list of surface edges, gather all interior edges into a list.
Begin by adding edgeeseedto an (initially empty) check
queue. Then, while the check queue is not empty, re-
move the first edgeeinterior and add it to the list of interior
edges. LetQe be the quadrilateral formed by taking the
two triangles on either side ofeinterior. For each edgeetest

of Qe, check to see if it is in the list of boundary edges or
interior edges. If not, addetest to the check queue. When
the check queue is empty, all interior edges have been
found.

6.3 Changing the topology
We must be able to make controlled changes to surface topol-

ogy: splitting along an embedded curve to create a new boundary,
or stitching two surfaces together along boundary edges. Introduc-
ing a crease in a surface along a curve or smoothing such a crease
is also implemented in terms of splitting and merging, since such a
discontinuity is actually represented using two independent surfaces
whose boundary curves are constrained to coincide.

Curve correspondence:To merge two surfaces along a pair of
boundaries, or skin two boundary curves with a single sheet, the
nodes on the two curves must first be put into correspondence. In
general, something like Sederberg’s scheme [31] might be used to
robustly determine this correspondence. A simpler (though by no
means fail-safe) procedure is to iteratively refine the curve with
fewer edges by splitting its longest edge until both curves have the
same number of nodes. Then choose the alignment that minimizes
the sum of squared distances between nodes. This works well in
our modeler in the common situation where the user brings curves
into proximity with each other before triggering a merge. The re-
sampling and Delaunay triangulation processes quickly iron out ar-
tifacts that may result from the simpler matching procedure once the
merge has been completed.

Splitting and merging surfaces:Recall that a triangulated sur-
face is represented as a collection of nodes, each with a radially
ordered list of neighbors. To merge two boundary curves that have
been put into correspondence, for each pair of nodes move the in-
terior edges of one node to the other, preserving their radial order.
This will convert the latter nodes from boundary nodes to infield
nodes, and leave the former boundary curve completely discon-
nected from the merged surface, whence its nodes and edges may
be destroyed. Splitting a surface along a closed infield curve is the
inverse of this: classify the node edges as being part of the region’s
interior, exterior, or boundary. Clone the boundary nodes and edges.
Then delete the interior edge connections from one boundary copy,
and the exterior edge connections from the other.

6.4 Surface intersections
A limitation of this modeling approach is that we cannot consider

operations that depend on approximated shapes to tell us something
about ideal shapes. For example, we shouldn’t look for points of
intersection between two approximate surfaces in order to answer
the question, “do the variational surfaces intersect?” Because of dis-
cretization error, whether or how two approximate surfaces intersect
says nothing about the true intersection topology.

This would seem to rule out an important style of design in which
intersecting surfaces are trimmed against each other and joined
along their intersection curves. But a version of trim-and-stitch sur-
face composition that is eminently suited for our approach treats
such intersection curves as free-standing boundary or character lines
in the composite surface. To “intersect” two variational surfaces, a
curve is first constructed that approximates the shape of the intersec-
tion curve of the explicit surfaces5. Then the parent surfaces arere-

5In our implementation, the approximate curve is coarsely sampled, and
these fixed samples are used as the anchors of a free-standing curve.
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Figure 5: Adding a handle: 1. a cylinder and a torus. The red glow indicates they are close enough for an automated join operation. 2.
Join complete: a hole has been cut in the torus and a blend region added connecting it to the cylinder. Boundary curves for the blend
region control the tightness of the blend. 3. The cylinder is extended to the opposide wall and joined (500 nodes). 4. The handle’s far
attachment point is dragged towards the initial attachment point (surface refined to 1500 nodes).

definedto interpolate this independent curve as their new boundary.
This somewhat backwards notion of trimming has the advantage
over passive surface intersection that the trim curve can be directly
reshaped by the designer.

This style of surface composition simplifies the implementation
of familiar intersection-based operations. For example, consider ap-
plying a parameterized embossing tool (a “branding iron” with con-
trol knobs) to a curved surface. Implementing such a tool becomes
simple if we observe that, since the tool will be given control over
the intersection shape, we don’t really need to perform the initial
surface intersection and trimming. To apply the tool, we can simply
specify that a given surface region contains a hole matching the tool
outline. The tool itself then supplies the fitted piece of surface that
fills the outline. In this example, the explicit surface is used only
for topological information — allowing the user to indicate (e.g.,
by proximity to the tool) which surface region is to be affected. The
result is unambiguous and independent of the resolution of the cur-
rent surface approximation.

6.5 External shape controllers
Because it would be cumbersome to specify all shapes in terms

of functional minimization, we also allow externally represented
shapes to control the shapes of bounded surface regions. These can
be thought of as shape-control tools which may be applied to vari-
ational surfaces. For example, in our sculpting system we define
a cylindrical offset tool in terms of a space curve backbone and a
radius function (Figure 6). A controlled region may contain sub-
regions that are in turn controlled by other shaping tools. This lets
us, e.g., attach handles or drill holes in externally controlled regions,
so that ultimately their local topology may be very different from
that of the shape controller.

Nodes along the boundary between an externally controlled re-
gion and a faired region will have a mixture of free and constrained
neighbors. This allows the shape of the surface on the controlled
side to influence the shape on the faired side up to second-order,
so that tangent and curvature information are propagated across the
boundary. Since only one shape control tool can drive a given sur-
face point at a time, it is not generally possible to have two tool-
controlled regions meet along a shared control curve. In these sit-
uations a faired blend region must be installed between them (see,
e.g., the body/handle attachment on Figure 7).

In implementing such controllers, there are any number of ways
to triangulate and track a tool shape, depending on how the tool sur-
face is represented, and we will not pretend to a complete discus-
sion. As an example from our system, a number of tool shapes are
defined as implicit surfaces, and we use the surface-tracking tech-
nique from Witkin and Heckbert’s point-sampling scheme [42] to
keep sample points glued to moving tool surfaces. The sample dis-

tribution and triangulation over the tool surface itself is handled just
as it was for faired surfaces. Since the the topologies of the implicit
surface tools in our system are knowna priori and remain fixed dur-
ing sculpting, we avoid the difficult general problem of triangulating
an implicit surface by generating a valid initial triangulation when
the tool is applied. Nonetheless, it is still possible for points to be-
have badly by bunching up when a tool surface is moved quickly,
and this approach can certainly be improved on. If tool surfaces
have an associated parameterization, the sampling and tracking may
be done using parametric coordinates and these difficulties do not
arise.

6.6 Building structured models
The composition of parameterized shapes via blending regions

leads naturally to structured free-form models. As in Bonner,et al’s
work with tubular structures [3], these shape control tools may be
organized in a variety of ways through the use of deformation hi-
erarchies (note that the deformations are not applied to the surface
itself). In our system the resulting collections of shape control tools
and character lines serve as “skeletons” supporting a triangulated
surface skin. As the underlying control shapes are changed, the sur-
face tracks them, automatically adjusting blend shapes, refining, un-
refining, and re-triangulating to maintain a good approximation to
the composite shape.

7 Conclusion
We have presented an approach to designing fair, free-form

shapes using triangulated surfaces. Our initial implementation of
these ideas is a modeler that runs at interactive speeds on a Silicon
Graphics Indigo class workstation, for surface models of several
hundred nodes (in the illustrations in this paper, any surfaces con-
taining more than 500 nodes were given a final refinement after all
interactive shaping was complete).

7.1 Contributions
The principal contribution of this work is a scheme for interac-

tively designing fair free-form shapes of arbitrary, mutable topol-
ogy. Little work has appeared regarding topological design for free-
form shapes (though see [10]). Our approach uses a triangulated
mesh to represent a surface model’s topology, and interactive mod-
eling operations alter the mesh to change this topology in controlled
ways.

Geometric fairness functional:The positions of the triangulated
sample points in 3D approximate the shape of an underlying smooth
surface, whose shape is defined as the solution of a functional mini-
mization. To this end, we use a geometric fairness functional based
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Figure 6: A branching surface. Three cylinders, controlled by
offset cylinder tools, meet in a minimum curvature surface. A
hole has been cut in one of the cylinders, and a fourth cylinder
attached there using a faired skirt (800 nodes).

Figure 7: A Klein mug. A single, self-intersecting surface whose
handle and outside and inside walls are each controlled by cylin-
der tools (800 nodes).

on extrinsic surface curvature, and thus avoid shape artifacts related
to surface parameterization. This is a highly non-linear functional,
yet we have developed an approach to its optimization that is fast
and robust enough to withstand interactive re-shaping.

Neighborhood parameterization:In order to perform this opti-
mization over a triangulated surface mesh, we perform local smooth
surface reconstruction that estimates surface derivatives while hon-
oring the neighborhood topologies induced by the mesh. Our
construction of neighborhood parameterizations uses a projection
scheme we have not seen elsewhere.

Interactive adaptive meshing:Finally, the fairing computation is
interleaved with adaptive refinement, adaptive sample distribution,
and re-triangulation. The approach used in this work, while not fun-
damentally new, is used here to novel effect: features are free to
slide around in a surface so as to help minimize the fairness func-
tional, rather than being bound by parametric surface coordinates to
a fixed place in the surface.

7.2 Future Work
Control nets:Though we formulate surface shape control using

interpolated control curves, our scheme does not yet accommodate
intersecting control curves. A compatibility condition[26] demands
that when control curves meet at a point, they must all fit a common
quadratic surface form; otherwise, no there can be no smooth in-
terpolating surface in the neighborhood of the intersection. What is
needed is a special intersection node that enforces this compatibility
constraint on curves meeting there (like the hub of an umbrella).

Smooth surfaces:It would be interesting to develop a version of
this approach using smooth triangular patches. We expect it to be
computationally expensive (this was our motivation for using point-
sampled approximations), but it may be that a very coarse surface
refinement in terms of patches could be made to perform compara-
bly to a more highly refined point-sampled surface, thus offsetting
this cost.

Curvature-adaptive sampling:Finally, it may be worthwhile to
consider a curvature-sensitive scheme for distributing sample points
across the surface. The error of our objective function integration in
a neighborhood is related to the neighborhood’s total curvature, and
an adaptive scheme would would tend to distribute this error more
evenly across nodes.
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