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Abstract

We present a new approach to interactive modeling of free-
form surfaces. Instead of a fixed mesh of control points,
the model presented to the user is that of an infinitely mal-
leable surface, with no fixed controls. The user is free
to apply control points and curves which are then avail-
able as handles for direct manipulation. The complexity
of the surface’s shape may be increased by adding more
control points and curves, without apparent limit. Within
the constraints imposed by the controls, the shape of the
surface is fully determined by one or more simple criteria,
such as smoothness. Our method for solving the resulting
constrained variational optimization problems rests on a
surface representation scheme allowing nonuniform sub-
division of B-spline surfaces. Automatic subdivision is
used to ensure that constraints are met, and to enforce er-
ror bounds. Efficient numerical solutions are obtained by
exploiting linearities in the problem formulation and the
representation.

Keywords: surface design, constrained optimization, in-
teraction techniques

1 Introduction

The most basic goal for interactive free-form surface de-
sign is to make it easy for the user to control the shape of
the surface. Traditionally, the pursuit of this goal has taken
the form of a search for the “right” surface representation,
one whose degrees of freedom suffice as controls for di-
rect manipulation by the user. The dominant approach to
surface modeling, using a control mesh to manipulate a

B-spline or other tensor product surface, clearly reflects
this outlook.

The control mesh approach is appealing in large mea-
sure because the surface’s response to control point dis-
placements is intuitive: pulling or pushing a control point
makes a local bump or dent whose shape is quite easily
controlled by fine interactive positioning. Unfortunately,
local bumps and dents are not the only features one wants
to create. For example, almost anyone who has used a
control mesh interface has had the frustrating experience
of trying to make a conceptually simple change, but be-
ing forced in the end to precisely reposition many—even
all—the control points to achieve the desired effect.

This sort of problem is bound to arise whenever the con-
trols provided to the user are closely tied to the represen-
tation’s degrees of freedom, since no fixed set of controls
can be expected to anticipate all of the users’ needs.

The work we will describe in this paper represents an
effort to escape this kind of inflexibility by severing the tie
between the controls and the representation. The model
we envision presenting to the user is that of an infinitely
malleable piecewise smooth surface,with no fixed controls
or structure of its own, and with no prior limit on its
complexity or ability to resolve detail. To this surface, the
user may freely attach a variety of features, such as points
and flexible curves, which then serve as handles for direct
interactive manipulation of the surface.

Within the constraints imposed by these controls, sur-
face behavior is governed not by the vagaries of the repre-
sentation, but by one or more simply expressed criteria—
that the surface should be as smooth as possible, should
conform as closely as possible to a prototype shape, etc.

Our choice of this formulation is motivated by the desire
to present a simple representation-independent facade to
the user; however, maintaining the facade is anything but
simple. Formally, our approach entails the specification
of surfaces as solutions to constrained variational opti-
mization problems, i.e. surfaces that extremize integrals
subject to constraints. To realize our goal of forming and
solving these problems quickly enough to achieve inter-
activity, yet accurately enough to provide useful surface
models, we must address these key issues:



� Surface Representation. We require a surface rep-
resentation that is concise, yet capable of resolving
varying degrees of detail with no inherent limit to sur-
face complexity; that is capable of representing Cn

surfaces (in practice we are usually content with C2

continuity) and that supports efficient solution of the
constrained optimization problems we wish to solve.
On the other hand, since the representation is to be
hidden from the user, we do not require the surface
to respond in an intuitive or natural way to direct
control-point manipulation.

� Constrained Optimization We must be able to ac-
curately and efficiently impose and maintain a va-
riety of constraints on the surface, including those
requiring the surface to contain a curve, or requir-
ing two surfaces to join along a specified trim curve.
Such constraints raise special problems because the
constraint equation involves an integral which must
be extremized. Subject to the constraints, we must
be able to extremize any of a variety of surface
integrals—to create fair surfaces, minimize deviation
from a specified rest shape, etc.

� Automatic Refinement To create surfaces that reflect
the variational solution, without letting the limitations
of the representation show through, the resolution of
the surface representation must be automatically con-
trolled. Ideally, subdivision should be driven by a
measure of the error due to the surface approxima-
tion. As constraints are added, additional degrees of
freedom must be provided to allow all constraints to
be satisfied simultaneously without ill conditioning.
Unlike point constraints, which can be met exactly,
integral constraints require subdivision to bring their
approximation error within a specified tolerance. Ad-
ditional subdivision should be driven by estimates of
the error with which the constrained variational min-
imum is approximated.

In this paper we report on our progress to date in pur-
suing the substantial research agenda that these require-
ments define. Following a discussion of background and
related work, we will address each of the issues outlined
above. First, the need to compactly represent arbitrarily
detailed surfaces leads us to consider schemes for locally
refinable representations. Although many have been de-
veloped, none meets all of our requirements. We describe
a surface representation based on sums of tensor-product
B-splines at varying levels of detail. Next we consider
the constrained optimization problem itself. We give for-
mulations for several quadratic objective functions, and
discuss linear constraints for controlling arbitrary points
and curves on the surface. We then turn to the problem
of automatic surface refinement based on two kinds of ap-
proximation error: objective function error, and constraint

error. Finally, we describe a preliminary implementation
and present results.

2 Background

2.1 Direct control of curve and surface
points

The limitations of control meshes as interactive handles
have been noted before. To address them, Fowler and
Bartels[11, 12] present techniques that allow the user to
directly manipulate arbitrary points on linear blend curves
and surfaces: the curve/surface is constrained to interpo-
late the grabbed point. As the point is moved interactively,
the change to the control points is minimized subject to
the interpolation constraint. Parametric derivatives are
also presented to the user for direct manipulation, to con-
trol surface orientation and curvature at a point. Moving
beyond point constraints, Celniker and Welch[6] presented
a technique for freezing the shape of the surface along an
embedded curve,although the issues involved in having the
surface track a moving control-curve were not addressed.

2.2 Nonuniform surface refinement

One of our key requirements is the ability to represent
smooth surfaces with no a priori limit on the detail that
can be resolved. Although a number of nonuniform refine-
ment schemes have been developed, no existing one meets
all of our needs. Most of these fail to provideC2 continu-
ity we require. In computer graphics, Bezier patches [8]
have been most widely used for nonuniformrefinement. In
general, however, higher-order continuity between Bezier
patches is not preserved if they are manipulated after sub-
division, though [20] formulates adaptive Bezier patch
refinement with G1 continuity. Triangular patches, which
support topologically irregular meshes, are widely used in
finite element analysis, but have been restricted to first-
order continuity. Recent developments[9] point to trian-
gular B-spline patches as a way of constructing a surface
with higher-order continuity across a triangular mesh, al-
though a computationally efficient refinement scheme for
such a representation has not yet been presented.

Forsey [10] presents a refinement scheme that uses a
hierarchy of rectangular B-spline overlays to produce C2

surfaces. Overlays can be added manually to add detail to
the surface, and large- or small-scale changes to the sur-
face shape can be made by manipulating control points at
different levels. The hierarchic offset scheme may be well-
suited to direct user manipulation of the control points, but
it does not meet our need for a refinable substrate for con-
strained variational optimization. One of the fundamental
advantages of conventional tensor product surfaces is lin-
earity: surface points and derivatives are linear functions
of the control points. Under Forsey’s formulation linearity



is lost because unit normals are used to compute offsets.
We depend heavily on linearity in later sections; use of the
hierarchic offset representation would have a devastating
impact on performance.

2.3 Constrained optimization

Variational constrained optimization plays a central role
in the formulation of so-called natural splines, piecewise
cubicC2 plane curves that interpolate their control points.
The proof that natural splines minimize the integral of
second derivative squared subject to the interpolation con-
straints frequently appears as a demonstration problem in
the calculus of variations[22].

Surface models based on variational principals have
been widely used in computer vision to solve surface re-
construction problems, in which a surface is fit to stereo
measurements, noisy position data, surface orientations,
shading information etc. [14, 15, 24]. Similar formula-
tions have been employed in computer graphics for phys-
ically based modeling of deformable surfaces [23]. All of
these are based on regular finite difference grids of fixed
resolution.

Constrained optimization based on second-derivative
norms has been used in fairing B-spline surfaces[18].
Moreton[19] minimizes variation of curvature to gener-
ate surfaces which skin networks of curves while seeking
circular or straight-line cross-sections. Such schemes can
give rise to very fair surfaces, but the nonlinearity of their
fairness metrics prevents them from being used for inter-
active surface design.

Celniker [5] proposed a physically-based model for in-
teractive free-form surface design, in which the surface is
modeled using a C1 mesh of triangular patches, and posi-
tions and normals may be controlled along patch bound-
aries. Interactivity is possible because the surface fairing
problem is formulated as a minimization of a quadratic
functional subject to linear constraints. Our approach
is closely related in this respect, although we consider
more general formulations for both surface functionals
and shape control constraints.

3 Surface Representation

We require a representation for smoothly deformable sur-
faces, which has no a priori limit on the detail that can
be resolved. Further, we require that points on such a
surface be linear functions of its shape control parameters,
yielding a more tractable control problem.

Tensor-product B-splines[8] conveniently representCn

piecewise polynomial surfaces as control-point weighted
sums of nonlinear shape functions, and they form the basis
of our representation scheme. Unfortunately, the standard
tensor-product construction does not allow detail to be

nonuniformly added to the surface through local refine-
ment. We instead represent such a locally refined region
as a sum of the original surface and smaller, more finely
parameterized surfaces. Surface patches at various levels
are evaluated and summed to compute the nonuniform sur-
face’s value. This is related to Forsey’s overlay scheme
for B-spline surface refinement [10], but the formulation
is much simpler because there is no notion of hierarchic
offsets for overlays. The nonuniform surface is a simple
sum of sparse, uniform surface layers, which may overlap
in arbitrary ways. Further, the resulting surface shape re-
mains a linear function of the control-points, leading to a
tractable surface control problem.

A degree�r tensor-product B-spline surface span is for-
mulated as

w(u; v) =

r+1X
i

r+1X
j

Ni(u)Nj(v)Pij ; (1)

where N(t) is the vector of r + 1 uniform B-spline basis
functions evaluated at t, and P is an (r + 1) � (r + 1)
array of control-points. A mesh of such spans will form a
Cr�1 composite surface if neighboring spans share r rows
of control-points along their common boundary. A U �V

array of control-points thus yields a (U�r)�(V �r)-span
composite surface.

It is easy to get lost in the sea of summations and in-
dices when working with composite surfaces and formulas
involving (1). To simplify notation in this and following
sections, we take advantage of the fact that the X , Y , and
Z dimensions of the surface in this representation scheme
may be treated independently, and state our formulas in
one dimension only. Further, we will represent the nth
uniform surface layerwn in terms of a 1� (UnVn) control
vector p, which is related to the Un � Vn control-point
matrix P by the structure-flattening constant S:

Pij =
X
k

Sijkpk;

where Sijk = 1 if Pij corresponds to pk, and is 0 other-
wise (S converts between a matrix and eg. its row-major
representation). Then

bk(u; v) =
X
i

X
j

Ni(u)Nj(v)Sijk

is a vector of basis functions, and its dot-product with
the control vector yields the value of the surface at that
point. A nonuniform surface w represented as the sum of
n uniform surfaces at varying levels of refinement is then

w(u; v) =

nX
i

pi � bi(u; v)

= pTb(u; v) (2)

where b and p are concatenations of the individual layers’
basis and control vectors into respective global vectors.

Note that although each level’s parameterization spans
the (u; v) domain of the base surface, its control-vector will



in general be sparse, with nonzero entries corresponding
to local refinements of the surface. In our implementation,
we represent a particular layer of refinement as a sparse
plugboard of control-points which exist independently of
any spans which reference them. Whenever a new span is
created within a particular level, it is connected to the ap-
propriate subset of the control-points for that level. This
implements the necessary control-point sharing between
adjacent spans. New control-points are created within a
layer the first time they are referenced by a span belong-
ing to that layer. Thus, only the regions where refinement
has actually taken place within a level are explicitly repre-
sented and evaluated.

It remains to ensure that the resulting sum of surfaces
has the proper degree of parametric continuity. Although
the summed surface is not formulated as a hierarchic offset
surface as in [10], Forsey’s technique for enforcing con-
tinuity over a composite offset surface is still applicable.
For any patch belonging to a particular level of refinement,
we constrain an r-wide band of control-points associated
with the patch’s boundary to be 0. This forces each patch’s
position and r� 1 derivatives to 0 at the patch boundaries,
which is sufficient to guarantee that the summed surface
is Cr�1 regardless of the way in which patches in various
layers overlap. When disjoint patches within a particular
layer have grown to the extent that they meet at a com-
mon boundary, the constraints along that boundary may
be discarded and the patches merged into one.

4 Constrained Optimization

We would like to control a surface by attaching points
and curves to it, letting the surface interpolate between
the controls in an appropriate way, so that the user need
not completely specify the surface at every point. Exactly
what characterizes desirable surface behavior depends on
the application, though there is often the requirement that
the surface prefer fair, graceful shapes. Regardless of their
particulars, many such behaviors can be cast as minimum
principles over the surface. One formulates a measure of
“goodness” at each surface point, and then integrates this
measure over the entire surface to get a single number
which characterizes the desirability of the surface shape
under that metric. We then search for surface shapes which
optimize this quantity while still satisfying the geometric
constraints specified by the user.

More formally, we seek shapes which extremize the in-
tegral of a surface metric subject to geometric constraints.
Such shapes are not intrinsically linked to any particular
surface representation scheme,but exist instead as the solu-
tions to constrained variational optimization problems[22].
Our modeler must construct acceptable approximations to
such infinite-dimensional variational surfaces using a fi-
nite number of control parameters. The approach taken
is to approximate the ideal surface as a piecewise polyno-

mial surface using the nonuniform B-spline representation
of the previous section.

In this section we describe techniques for computing
the B-spline control-points which optimize surface shape
while satisfying user-supplied geometric constraints. We
first discuss a number of possible surface metrics (objective
functions, in optimization parlance). We then formulate
point and curve constraints for controlling the surface.
Finally, we discuss techniques for solving the resulting
constrained optimization problems at interactive speeds.

4.1 Surface Objective Functions

One might choose to extremize any number of functions
over a surface to achieve fair shapes. One such func-
tion measures how much the surface is stretched and bent
by looking at the differential area and curvature at each
point[23]:

Q(w) =

Z
w
kGk2

� + kBk2
�; (3)

where G and B represent the first and second fundamen-
tal surface forms, and � and � weight the matrix norms.
The � and � terms determine resistance to stretching and
resistance to bending, respectively.

The vector and matrix norms in this function make it
highly nonlinear, leading to a difficult nonlinear optimiza-
tion problem. It is therefore common[23, 5, 24] to simplify
this objective function by linearizing the matrix norms and
B (this is the thin plate under tension model [21, 25]):

Q(w) =

Z
w

2X
i;j=1

�ijDiwDjw + �ij(DiDjw)
2; (4)

where Diw represents the partial derivative of the surface
w with respect to the ith parameter. The approximation
is only accurate near the actual minimum (where higher
order terms tend to 0) but it is still well-behaved away
from the minimum, and the computational benefits are
enormous: for a linear surface representation such as a
tensor product B-spline, this simplified objective function
is quadratic in the underlying surface degrees of freedom,
and we can cast the optimization problem as a constrained
least-squares minimization.

First, we formulate (4) in terms of the composite B-
spline surface of equation(2):

Q(w) =

Z
w

2X
i;j=1

0
@ �ijp

TDib p
TDjb

+
�ij(p

TDiDjb)
2

1
A:



Since the surface is linear in the control vector p it may
be brought outside and the integration in (u; v) completed
to yield a dim(p)� dim(p) matrixH:

Q(w) = pT
Z
w

2X
i;j=1

0
@ �ijDib
Djb

+
�ijDiDjb
DiDjb

1
A p

= pTHp: (5)

(the symbol
 signifies an outer product)
Minimizing (5) yields a value for the control vector p

corresponding to the optimal approximation to the varia-
tional surface defined by (4), for the given surface refine-
ment. This is the Rayleigh-Ritz method of approximating
a continuum solution with a finite set of continuous lin-
ear functions[22]. Clearly a minimal solution to equation
(5) is 0 — we must add constraints to keep the surface
from collapsing to a point if things are to be at all inter-
esting. As we will see in the next subsection, a variety of
geometric constraints can be expressed as linear relations
over the control vector. Then the optimization becomes
a linearly constrained quadratic minimization, which can
be efficiently solved using techniques described in Sec-
tion 4.3.

But first, consider another possibility for the objective
function. Suppose we measure the amount the surface has
deformed from some prototype shape. In the absence of
constraints, minimizing this deformation metric causes the
surface to assume the prototype shape. When constraint
handles are attached to such a surface and manipulated,
the surface should gracefully deform from this shape.

One way of formulating such a shape attractor is to
modify (4) to measure the change in stretch and bending
from that of a rest shape ŵ [23, 18]. This yields

Q(w) =

Z
w

2X
i;j=1

0
@ �ijDi(w � ŵ)Dj(w � ŵ)

+
�ij(DiDj(w � ŵ))2

1
A;

leading to

Q(w) = (p� p̂)
T
H(p� p̂) (6)

where p̂ is the control vector corresponding to the proto-
type shape. We must then minimize (6) subject to con-
straints.

The curve manipulation techniques of [2, 11] can also
be cast as a shape-attracting quadratic optimization. They
minimize absolute control-point displacement subject to
point constraints. That is, their deformation metric is sim-
ply (p� p̂)T (p� p̂), where p̂ is the control vector for the
current shape. This is not a satisfactory objective function
from the standpoint of representation-independent control
because, as the authors noted, the local properties of the
basis show through. Components of p which are not di-
rectly affected by constraints will always keep their orig-
inal values, as this produces the minimum “deformation”.

Thus, the size of the bump raised by pulling on such a sur-
face depends on the level of refinement in the underlying
representation.

4.2 Geometric Constraints

The user must be able to attach points and curves to the
surface and use them to control the surface shape during
sculpting. We implement these handles as geometric con-
straints which the surface must satisfy while optimizing its
objective function. In this section, we discuss two broad
classes of geometric constraints: finite-dimensional con-
straints, which control the surface shape at discrete points,
and transfinite constraints, which control the surface shape
along embedded curves or sub-regions of the surface.

Within each of these classes, we focus on constraint
formulations which are linear in the surface control vec-
tor, as they lead to a constrained optimization problem
which can be solved at interactive speeds. In general, such
constraints involve surface features whose surface u; v co-
ordinates remain fixed, so that the B-spline basis functions
may be evaluated once to yield linear relationships among
the components of the control vector. Thus, constraints in-
volving sliding surface points of attachment are excluded
in such formulations.

Within the class of linear constraints, we further restrict
our focus to constraint formulations which do not couple
the (independent) control vectors for each of the surface’s
spatial dimensions. Computing an independently con-
strained solution in each spatial dimension is significantly
cheaper than computing a single coupled solution for all
dimensions because the system matrices involved grow as
the square of the size of the control vector, though for some
applications the additional cost may be justified.

4.2.1 Finite-Dimensional Constraints

In sculpting a surface one might specify shape require-
ments which must hold at a set of discrete points on the
surface. Surface point positions, point normal directions,
and offset relationships between points are all examples of
useful point constraints for controlling the surface. Each
generates some fixed number of constraints, depending on
the way in which the relationship is formulated.

For example, the constraint that a surface point
w(u0; v0) remain fixed at a world-space point x can be
written as

x = w(u0; v0)

= pTb(u0; v0):

This actually represents three independent constraints, one
in each spatial dimension, andb(u0; v0) may be evaluated
to yield linear constraints in their respective p’s. Con-
straints to control various parametric derivatives of the
surface, such as tangent vectors at a point, are similarly
formulated [11].



4.2.2 Transfinite Constraints

A constraint which involves a one- or two-dimensional sur-
face entity, such as an embedded curve or surface patch,
must be formulated as an integral over the entity. For ex-
ample, given a parametric (u; v) curvec(t) = (u(t); v(t));
the constraint that the surface curve C(t) = (w � c)(t)
align itself with the space curveD(t) would be written:Z

C
(C�D)2 = 0: (7)

Such a constraint statement is dimensionally infinite,
and because our surface representation has only a finite
number of control points the surface will in general not
be able to exactly satisfy the constraint. We will instead
constrain the discretized surface to optimally approximate
the constraint in a least-squares sense.

Analogous to the objective functions of the previous sec-
tion, we formulate a transfinite constraint as a quadratic
function which achieves a global minimum when the con-
straint is satisfied[6].

Thus, equation (7) is at a minimum when its gradient
with respect to the control vector is 0, and yields the dis-
cretized gradient constraints:

0 =
@
R
(C�D)2

@p

=

Z
C
(C�D)

@C

@p

=

Z
c
((w � c)�D)

@(w � c)

@p

For our B-spline surface this becomes

0 = pT
Z
c
(b � c)(t)
 (b � c)(t)�Z

c
D(b � c)(t);

The integration is completed independently of p (analyt-
ically, or numerically by point sampling), leading to a
system of linear constraints in the control vector p. The
constraints clamp the surface in a shape which minimizes
its least-square deviation from the control curve c. Unac-
ceptably large deviations can be eliminated by refining the
parts of the surface through which the curve passes.

The constraints generated by this gradient-clamping op-
eration are not necessarily independent. The shape of the
embedded curve inu; v determines number of independent
constraint rows generated — an iso-paramteric line only
produces r+1 independent constraint rows per span, while
a zigzag stitch across a span might produce fully (r + 1)2

independent rows, so that the space curve would com-
pletely control the shape of the underlying surface span.
Thus, the presence of dependent constraint rows, while
numerically inconvenient, is desirable because it means
the surface can interpolate the constraint curve with some
of its control points remaining undetermined. The surface

is then free to change so as to minimize its objective func-
tion or to respond to other sculpting operators while still
preserving the constraint.

As with any technique in which the question of lin-
ear independence arises, there are delicate numeric issues
which must be considered. In particular, a u; v curve with
very slight high-degree oscillations will give rise to nearly-
dependent constraint rows for an interpolation constraint,
and thus will lock down all degrees of freedom in the
spans it passes through. When such a curve is attached to
a space curve, the surface shape is completely determined
by the space curve, and thus the surface can behave arbi-
trarily badly with respect to the objective function. Such
constraint leverage can be reduced by adaptively refining
the surface representation. Another technique, reduced
quadrature [27], involves numerically evaluating the con-
straint integral by sampling as if the surface representation
was of a lower order. Such undersampling leads to a de-
pendent set of constraints, thereby eliminating some of the
locking behavior associated with a higher-order integra-
tion.

4.3 Linearly Constrained Quadratic Opti-
mization

Having formulated the surface approximation problem
with a quadratic objective function and linear constraints,
a vast body of optimization literature can be brought to
bear. In particular, very efficient techniques exist for en-
forcing linear constraints in this context, and we discuss
two we have used: one method using Lagrange multipliers
to enforce a least-squares fit to the constraint matrix, the
other using a penalty-based approach.

We seek solution methods for the linearly constrained
quadratic optimization problem

min


 1

2p
THp� pT f




p subject toAp = b

(8)

whereH is the Hessian of the quadratic metric to be min-
imized, f is the gradient optimization term, and Ap = b

is the system of linear constraints to be satisfied (each row
of A represents a single linear constraint, and the corre-
sponding component of b is its value). Solution methods
generally transform this to an unconstrained system

minbp




1

2
bpT bHbp� bpTbf



 ;

whose solutions bp; when transformed back to p’s, are
guaranteed to satisfy the constraints. The unconstrained
system is at a minimum when its derivatives are 0, thus we
are led to solve the system

bHbp = bf
to find the minimizing bp; then transform it back to p to
recover the constrained minimum solution.



We may make either of two transformations of the prob-
lem to an unconstrained optimization. For the first, we
reformulate equation (8) by adding a single degree of free-
dom yi (a Lagrange multiplier[22]) for each constraint row
Ai and we then minimize the unconstrained

min
p





1
2
pTHp� pT f + (Ap� b)Ty





 :
Differentiating with respect to p then y leads to the aug-
mented system���� H AT

A 0

����
���� py

���� =
���� fb

���� ; (9)

which, though no longer positive-definite, does determine
the unique minimum which satisfies the constraints pro-
vided the constraint matrix contains no dependent rows.
This method has the advantage that it enforces the con-
straints exactly, in contrast with the penalty method below.
This is at the expense of adding an additional variable yi
for each constraint to be enforced. Also, an initial reduc-
tion of the constraint matrix to a set of independent rows
must be performed. Note that if a least-squares fit to the
constraints is to be enforced, we must actually form the
normal matrixATA, and take its independent rows as our
constraints.

A second solution method associates a penalty term with
each constraint, so that the minimization becomes

minbp





�

�A

H

�
p �

�
�b

f

� 



 ; (10)

where � is a large positive weight and the solution to
the resulting unconstrained minimization approaches the
true constrained minimum as � ! 1. In computing a
least-squares solution to (10), we can avoid the numerical
conditioning problems associated with forming the con-
straint normal matrix ATA by instead performing a QR
factorization[13] of the matrix in (10). Since � must be
chosen small enough to leave a well-conditioned problem,
the solution to the penalty system can leave an unaccept-
ably large constraint residual. This can be reduced by
performing additional minimization steps on the residual
using the same factored matrix[26].

An advantage to formulating the constrained minimiza-
tion in this way is that no new variables are added to the
system. This is offset, however, by the need to perform
additional solver steps in refining the residual. A more
important advantage to the formulation is that dependent
constraint rows need not be eliminated prior to building and
factoring the augmented matrix. This makes it straight-
forward to use factorization update techniques [3, 4] to
incrementally update the factorization of the system ma-
trix as surface constraints are added or deleted.

4.4 Automatic Refinement

We are using a piecewise polynomial surface with a fi-
nite number of control parameters to approximate an

infinite-dimensional variational surface. To maintain a
representation-independent facade, we must be able to
control the error introduced by this approximation. We
must be concerned with two kinds of approximation er-
ror. First, the discretized surface may be unable to satisfy
all constraints simultaneously (constraint error.) Second,
even if all constraints are met, the discretized surface may
fail to achieve the variational minimum (objective function
error.)

Of the two, objective function error is more difficult to
handle because it cannot be measured directly1. How to
estimate this kind of error a priori is an open research prob-
lem [27, 16]. More widely used are a posteriori methods in
which an estimate is obtained by comparing higher-order
solutions to lower-order ones. [1, 17, 7]

In contrast, constraint error can generally be measured
directly, by calculating point-to-point or curve-to-curve
distances. A straightforward refinement scheme is to com-
pute the constraint error per surface span, refining those
spans whose error exceeds a specified tolerance.

5 Results

An interactive free-form surface modeler implementing
the techniques described in this paper has been developed
at CMU. The modeler, which runs on Silicon Graphics Iris
workstations, allows the user to interactively manipulate
variational curves and surfaces, controlling and combin-
ing them through a variety of constraints and objective
functions.

By default, surfaces minimize the fairness integral given
in equation (4) subject to the constraints acting on them.
At any time, the user may install a surface’s current shape
as its rest shape, or “melt” a previously remembered rest
shape. We have found that additional objective function
terms can be useful as interactive sculpting tools—for in-
stance, terms which inflate or deflate the surface.

Basic surface control is provided by point constraints,
which take the place of conventional control points.
Ephemeral position constraints allow the user to grab and
drag arbitrary points on the surface, while persistent con-
straints help define surface shape. Additional control is
afforded by surface normal constraints.

Curve constraints have proven to be a far more power-
ful modeling tool. To create a surface or space curve, the
user defines a sequence of surface or space points, from
which an interpolating curve is constructed. Once created,
curves become first-class variational objects that can be
controlled by constraints. To use curves as surface con-
trols, a surface curve is attached to a space curve, which
may be manipulated by the user. This attachment can be
established in either of two ways. First, a surface curve
may be snapped to an independently created free-standing

1unless the error-free answer is available for comparison!



Figure 1: Surface modeling with curve constraints. Upper left: the user creates a surface curve on a sheet. The push-pins
identify point constraints, which keep the surface from collapsing to a point. Upper right: the surface has been trimmed.
The surface curve defining the boundary has been promoted to a space curve which can be independently controlled by the
user. Lower left: Point constraints are applied to the space curve to modify its shape. The surface, which is now constrained
to contain the space curve, deforms to follow the curve. Lower right: a second control curve is added and manipulated.

space curve, allowing the user to define literal wireframes,
then fit surfaces onto them. Second, the user may inscribe
control curves on the surface to which automatically cre-
ated space curves are fit. Figure 1 shows the use of curve
constraints. Additionally, the user may impose ribbon con-
straints that control surface orientation as well as position
along the curve.

Curve constraints may also be used to join surface
patches by snapping a pair of surface curves to a sin-
gle space curve. The result is that the two surfaces are
constrained to intersect along the space curve. The in-
tersection curve may then be directly manipulated by the
user. In this way, surface sheets may be assembled and
trimmed against the joined curves to form boundary rep-
resentations for solids (see figure 2). As a generalization
of ribbon constraints, joined surfaces may be subjected to
hinge constraints that independently control the surfaces’
orientations along the intersection curve.

The modeler employs the refinable surface representa-
tion described in section 3. The user may refine the surface
manually by selecting regions to be refined, or request au-
tomatic refinement based on constraint error. Currently,
the system does not perform refinement based on objec-
tive function error. The use of automatic refinement is
illustrated in figure 3.
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